首页

> 论文期刊知识库

首页 论文期刊知识库 问题

供水系统论文摘要

发布时间:

供水系统论文摘要

1 引言 供水系统在人们生活和工业应用当中是必不可少的。随着人们生活水平的提高和现代工业的发展,人们对供水系统的质量和可靠性的要求越来越高。变频能够很好的满足现代供水系统的要求。在变频出现以前,有以下供水方式:(1) 单台恒定转速泵的供水系统这种供水方式是水泵从蓄水池中抽水加压直接送往用户,严重影响了城市公用水管管网压力的稳定,水泵整日不停运转。这种系统简单、造价最低,但耗电严重,水压不稳,供水质量极差。(2) 恒定转速泵加水塔(或高位水箱)的供水系统这种供水方式是由水泵先向水塔供水,再由水塔向用户供水。水塔注满水后水泵停止工作,水塔水位低于某一高度时水泵启动,水泵处于断续工作状态中。这种方式比前一种省电,供水压力比较稳定,但基建设备投资大,占地面积大,水压不可调,供水质量差。(3)恒定转速泵加气压罐的供水系统这种供水方式是利用封闭的气压罐代替水塔蓄水,通过检测罐内压力来控制水泵的开与停。当罐中压力降到压力下限时,水泵启动;当罐中压力升到压力上限时,水泵停止。这种方式,设备的成本比水塔要低很多。但是电机起动频繁,易造成电机的损坏,能耗大。变频不仅克服了过去供水系统的缺点,而且有其自身的优点。此系统采用了先进的s7-200plc和变频器mm440,具有低廉的价格和强大的指令,可以满足多种多样的小规模的控制要求,变频器mm440具有很高的运行可靠性、功能的多样性和全面而完善的控制功能。这种供水方式不仅提高了供水系统的稳定性和可靠性,而且实现水泵的无级调速,使供水压力能够跟踪系统所需水压,提高了供水质量。同时变频器对水泵采取软启动,启动时冲击电流很小,启动能耗小。2 供水系统的基本特性供水系统的基本特性是水泵在某一转速下扬程h与流量q之间的关系曲线f (q),前提是供水系统管路中的阀门开度不变。扬程特性所反映的是扬程h与用水流量q之间的关系。由图1的扬程特性表明,流量q越大,扬程h越小。在阀门开度和水泵转速都不变的情况下,流量q的大小主要取决于用户的用水情况。管阻特性是以水泵的转速不变为前提,阀门在某一开度下,扬程h与流量q之间的关系h=f (q)。管阻特性反映了水泵转动的能量用来克服水泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图1可知,在同一阀门开度下,扬程h越大,流量q也越大,流量q的大小反映了系统的供水能力。扬程特性曲线和管阻特性曲线的交点,称为供水系统的平衡工作点,如图1中a点。在这一点,用户的用水流量和供水系统的供水流量达到平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。当用水流量和供水流量达到平衡时,扬程ha稳定,供水系统的压力也保持恒定。图1 供水系统的基本特性3 变频恒压供水系统的构成及工作原理1 系统的构成变频恒压供水系统采用西门子的plc作为控制器,变频器mm440是频率调节器,和电动机作为执行机构,压力传感器作为控制的反馈元件。plc选用内部控制模块cpu224,模拟量2路输入通用模块、模拟量2路输出通用模块和pid模块。cpu224有14路输入/10路输出,对于小型的控制系统而言够用。pid模块使用方便,在软件中只需要配置pid的每个参数。与mm440的电源输入口连接,经过变频器变频后的交流电接,带动水泵转动。s7-200数字输出口输出控制信号到,两端连接的是工频或变频的,主要起接通或断开与。s7-200的模拟输出口输出控制电压信号给mm440的模拟电压输入口ain1+和ain1-,该控制电压主要调节交流电的频率。压力传感器从供水网络中反馈压力信号,压力信号经过滤波放大后输入给s7-200的模拟输入口。系统的结构如图2所示。图2 变频恒压供水系统的总体框图2 系统的工作原理变频恒压供水系统是由三相异步电动机带动水泵旋转来供水,通过变频器调节输入交流电的频率而调节异步电动机的转速,从而改变水泵的出水流量来调节供水系统的压力。因此,供水系统变频的实质是三相异步电动机的变频调速,通过改变定子供电频率来改变同步转速而实现调速的。的转速为:其中: n0为同步转速;n为转子转速;f为异步电机的定子输入交流电的频率;s为异步电机的转差率;p为异步电机的极对数。由上式可知,当异步电机的极对数p不变时,电机转子转速n与定子输入交流电频率f成正比。当系统启动,运行在自动模式时,此时手动模式无效。系统按照给定的水压进行设定,plc根据给定的水压自动调节交流电的频率,精确跟踪给定的供水压力。在用水量高峰时期,系统的用水量猛增,扬程降低,供水量不足,供水水压下降,1#电机输入交流电的频率会升高,以提高供水水压。当交流电的频率达到最大频率,供水水压仍然小于设定的水压时,1#电机会自动切换到工频状态下,同时2#电机启动并工作在变频状态。在夜间,系统的用水量递减,扬程升高,供水量过大,2#电机会退出变频状态,1#电机由工频切换到变频状态,并不断调节交流电频率,系统最终要维持供水的设定压力。当系统运行在手动模式时,自动模式无效。在自动模式出现问题或系统在维护期间时,系统才会采用手动模式。用户根据需要,可以从plc的输入开关输入信号,选择1#电机或2#电机运行在工频状态。变频恒压供水系统的功能要求:系统的供水压力能够准确跟踪给定供水压力(稳态误差在5%内);可以自动进行自动模式/手动模式切换。系统的控制原理框图如图3所示。压力传感器从供水管网反馈电压信号,电压信号经过滤波放大后送到s7-200的模拟输入口,与给定的供水压力信号比较形成压力偏差信号,经过plc(s7-200)pid模块pi调节后发出控制电压信号,送到变频器mm440的模拟输入调节端口。送到变频器mm440的模拟电压信号与连接到变频器mm440的三相交流电的频率一一对应,调节控制电压信号就可以调节三相交流电的频率。系统是以供水管网的供水压力为控制对象而构成的,其设计是按照两个电机就可以完全满足供水要求。图3 变频恒压供水系统的控制原理框图4 硬件1 主电路变频恒压供水系统就是利用异步电机拖动水泵的。系统的主电路由电源开关q、熔断器fu、交流接触器km、kr等组成,采用了一台变频器切换控制两台电机,1#电机和2#电机可以在工频和变频状态下进行切换,交流接触器的通断由s7-200的输出口控制。主电路如图4所示。图4 系统主电路图2 控制电路控制电路主要由plc(s7-200)、变频器mm440等组成,plc外围电路接线图如图5所示。总电源开关为q,sb0为plc的程序启动按钮,与plc的0输入口相连接,当按下sb0时,0为“1”,plc程序启动。k1为系统的自动模式开关,当k1接通时,1为“1”,交流接触器km1闭合,系统自动运行。当变频器的频率达到上限频率时,5为“1”,1#泵和电机切换到工频状态下,2#泵和电机变频启动。当变频器的频率达到下限频率时,6为“1”,2#电机停止运行,1#电机由工频切换到变频状态下。5和6的状态由变频器输入。k2为系统的手动模式开关,当k2接通时,2为“1”,交流接触器km1断开,系统不能自动运行,用户可以根据需要接通k3或k4来选取1#电机或2#电机工频运行。km1为控制1#电机和2#电机在自动模式下运行的交流接触器,km2为控制1#电机在变频下运行的交流接触器,km3为控制1#电机在工频下运行的交流接触器,km4为控制2#电机在变频下运行的交流接触器,km5为控制2#电机在工频下运行的交流接触器。图5 plc外围接线图5 程序设计1 plc程序设计plc程序设计的主要流程如图6所示。合上开关q,按下起动按钮sb0,plc程序复位。当合上开关k1,1为“1”,系统在自动模式下运行,交流接触器km1接通,系统将根据程序跟踪设定供水压力。图6 主程序流程图当用户用水量递增,变频器达到频率50hz,供水压力还没有达到设定的供水压力时,mm440输出高电平到5。此时,1为“0”, 2为“1”,交流接触器km2断开,km3接通,1#电机由变频切换到工频。定时器计时3s,变频器停止,变频器的频率由最高频率50hz逐渐下降,3s后3为“1”,2#电机接到变频器开始变频运行。设置延迟时间主要原因是让变频器的频率下降,软启动静止的2#电机,减小电机启动电流,避免电机烧毁。当用户用水量减小,变频器达到下限频率30hz,供水压力还是高于设定的供水压力时,mm440输出高电平到6。此时,4为“0”,km2断开,2#电机退出变频并逐渐停止。同时1为“1”,2为“0”,交流接触器km2接通,km3断开,1#电机由工频切换到变频。下限频率设定在30hz主要原因:在供水系统中,转速过低时会出现水泵的全扬程小于基本扬程(实际扬程)形成水泵“空转”的现象。在多数情况下,下限频率应定为30hz~35hz。当合上开关k2,系统在手动模式下运行,交流接触器km1断开。用户可以根据需要,合上开关k3,交流接触器km3接通,选择1#电机在工频下运行。合上开关k4,交流接触器km5接通,选择2#电机在工频下运行。2 变频器mm440的参数配置变频器mm440主要使用的是模拟输入口ain1+和ain1-,模拟电压信号输入后通过得到数字信号。由plc模拟输出口输出模拟控制电压信号,输入到变频器的模拟口,变频器的频率和控制电压一一对应。系统使用变频器的模拟端口,最高频率应该设置为50hz,最低频率为30hz。mm440的参数配置如附表所示。附表 mm440的参数配置6 结束语应用西门子plc(s7-200)内部的pid模块和变频器mm440的无极调速控制恒压供水系统,高效节能,调速供水效果突出,抗干扰能力强。同时采用变频器对电机实行软起动,减少了设备损耗,延长了水泵、电机设备的使用寿命。以供水水压为控制对象的闭环控制,稳态误差小,动态响应快,运行稳定。实验效果表明,采用plc(s7-200)和变频器mm440构成的变频恒压供水系统,具有很强的实用性,体现了变频调速恒压供水的技术优势,为供水领域开辟了切实有效的途径。参考文献[1] 李光,谢欢,王直杰 高压变频器模拟量控制电路及功能设计[j] 电气传动自动化,2008,38(7):63-[2] 彭旭昀 一种基于变频器pid功能的plc控制恒压供水系统[j] 机电工程技术,2005,34(10):54-[3] 陈新恩,王永祥 基于s7-200的变频调速恒压供水系统[j] 制造业电气,2006,25(6):37-[4] 朱玉堂 变频恒压供水系统的研究开发与应用[d] 杭州:浙江大学,

东莞市沃科自动化设备有限公司 东莞市沃科自动化设备有限公司是!!!大大的!!! 请打款过的马上去现场抓人!!! 捏死!!! 晚了就跑了。

目录  摘要 1  目录 3  第一章 绪论4  1概论 4  1 PLC的定义4  2 PLC的特点4  1高可靠性5  2应用灵活,使用方便5  3面向控制过程的编程语言,容易掌握5  3 PLC的分类5  1小型PLC5  2中型PLC6  3大型PLC6  4 PLC的主要技术指标6  1存储器容量6  2输入/输出点数6  3扫描时间6  4指令种类和数量6  5内部寄存的种类和数量7  6扩展能力7  7智能模块的种类和数量7  第二章 PLC的结构8  1 PLC的基本结构8  2整体式的结构PLC8  3模块式结构的PLC8  4 PLC各组成部分介绍9  5基本指令10  第三章 PLC的工作原理11  1循环扫描技术11  2 PLC的输入/输出的响应时间12  第四章 PLC的控制系统设计原则和设计步骤14  1 设计原则14  2 设计步骤14  第五章 PLC的硬件知识16  1 PLC的模块介绍16  2 FX2N PLC的硬件系统构成18  第六章 课程设计PLC全自动洗衣机控制系统设计20  1 全自动洗衣机控制系统的设计要求20  2 全自动洗衣机控制系统的PLC选型和资源配置21  3 全自动洗衣机控制系统程序设计和调试22  4 全自动洗衣机控制PLC程序24  5 设计小结32  第七章 参考文献33

供水系统论文

高楼 供水系统就有 QQ 79O32ll26

东莞市沃科自动化设备有限公司 东莞市沃科自动化设备有限公司是!!!大大的!!! 请打款过的马上去现场抓人!!! 捏死!!! 晚了就跑了。

需要多少字啊

我们提前储备一些论文资料,

供水系统论文题目

1 引言 供水系统在人们生活和工业应用当中是必不可少的。随着人们生活水平的提高和现代工业的发展,人们对供水系统的质量和可靠性的要求越来越高。变频能够很好的满足现代供水系统的要求。在变频出现以前,有以下供水方式:(1) 单台恒定转速泵的供水系统这种供水方式是水泵从蓄水池中抽水加压直接送往用户,严重影响了城市公用水管管网压力的稳定,水泵整日不停运转。这种系统简单、造价最低,但耗电严重,水压不稳,供水质量极差。(2) 恒定转速泵加水塔(或高位水箱)的供水系统这种供水方式是由水泵先向水塔供水,再由水塔向用户供水。水塔注满水后水泵停止工作,水塔水位低于某一高度时水泵启动,水泵处于断续工作状态中。这种方式比前一种省电,供水压力比较稳定,但基建设备投资大,占地面积大,水压不可调,供水质量差。(3)恒定转速泵加气压罐的供水系统这种供水方式是利用封闭的气压罐代替水塔蓄水,通过检测罐内压力来控制水泵的开与停。当罐中压力降到压力下限时,水泵启动;当罐中压力升到压力上限时,水泵停止。这种方式,设备的成本比水塔要低很多。但是电机起动频繁,易造成电机的损坏,能耗大。变频不仅克服了过去供水系统的缺点,而且有其自身的优点。此系统采用了先进的s7-200plc和变频器mm440,具有低廉的价格和强大的指令,可以满足多种多样的小规模的控制要求,变频器mm440具有很高的运行可靠性、功能的多样性和全面而完善的控制功能。这种供水方式不仅提高了供水系统的稳定性和可靠性,而且实现水泵的无级调速,使供水压力能够跟踪系统所需水压,提高了供水质量。同时变频器对水泵采取软启动,启动时冲击电流很小,启动能耗小。2 供水系统的基本特性供水系统的基本特性是水泵在某一转速下扬程h与流量q之间的关系曲线f (q),前提是供水系统管路中的阀门开度不变。扬程特性所反映的是扬程h与用水流量q之间的关系。由图1的扬程特性表明,流量q越大,扬程h越小。在阀门开度和水泵转速都不变的情况下,流量q的大小主要取决于用户的用水情况。管阻特性是以水泵的转速不变为前提,阀门在某一开度下,扬程h与流量q之间的关系h=f (q)。管阻特性反映了水泵转动的能量用来克服水泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图1可知,在同一阀门开度下,扬程h越大,流量q也越大,流量q的大小反映了系统的供水能力。扬程特性曲线和管阻特性曲线的交点,称为供水系统的平衡工作点,如图1中a点。在这一点,用户的用水流量和供水系统的供水流量达到平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。当用水流量和供水流量达到平衡时,扬程ha稳定,供水系统的压力也保持恒定。图1 供水系统的基本特性3 变频恒压供水系统的构成及工作原理1 系统的构成变频恒压供水系统采用西门子的plc作为控制器,变频器mm440是频率调节器,和电动机作为执行机构,压力传感器作为控制的反馈元件。plc选用内部控制模块cpu224,模拟量2路输入通用模块、模拟量2路输出通用模块和pid模块。cpu224有14路输入/10路输出,对于小型的控制系统而言够用。pid模块使用方便,在软件中只需要配置pid的每个参数。与mm440的电源输入口连接,经过变频器变频后的交流电接,带动水泵转动。s7-200数字输出口输出控制信号到,两端连接的是工频或变频的,主要起接通或断开与。s7-200的模拟输出口输出控制电压信号给mm440的模拟电压输入口ain1+和ain1-,该控制电压主要调节交流电的频率。压力传感器从供水网络中反馈压力信号,压力信号经过滤波放大后输入给s7-200的模拟输入口。系统的结构如图2所示。图2 变频恒压供水系统的总体框图2 系统的工作原理变频恒压供水系统是由三相异步电动机带动水泵旋转来供水,通过变频器调节输入交流电的频率而调节异步电动机的转速,从而改变水泵的出水流量来调节供水系统的压力。因此,供水系统变频的实质是三相异步电动机的变频调速,通过改变定子供电频率来改变同步转速而实现调速的。的转速为:其中: n0为同步转速;n为转子转速;f为异步电机的定子输入交流电的频率;s为异步电机的转差率;p为异步电机的极对数。由上式可知,当异步电机的极对数p不变时,电机转子转速n与定子输入交流电频率f成正比。当系统启动,运行在自动模式时,此时手动模式无效。系统按照给定的水压进行设定,plc根据给定的水压自动调节交流电的频率,精确跟踪给定的供水压力。在用水量高峰时期,系统的用水量猛增,扬程降低,供水量不足,供水水压下降,1#电机输入交流电的频率会升高,以提高供水水压。当交流电的频率达到最大频率,供水水压仍然小于设定的水压时,1#电机会自动切换到工频状态下,同时2#电机启动并工作在变频状态。在夜间,系统的用水量递减,扬程升高,供水量过大,2#电机会退出变频状态,1#电机由工频切换到变频状态,并不断调节交流电频率,系统最终要维持供水的设定压力。当系统运行在手动模式时,自动模式无效。在自动模式出现问题或系统在维护期间时,系统才会采用手动模式。用户根据需要,可以从plc的输入开关输入信号,选择1#电机或2#电机运行在工频状态。变频恒压供水系统的功能要求:系统的供水压力能够准确跟踪给定供水压力(稳态误差在5%内);可以自动进行自动模式/手动模式切换。系统的控制原理框图如图3所示。压力传感器从供水管网反馈电压信号,电压信号经过滤波放大后送到s7-200的模拟输入口,与给定的供水压力信号比较形成压力偏差信号,经过plc(s7-200)pid模块pi调节后发出控制电压信号,送到变频器mm440的模拟输入调节端口。送到变频器mm440的模拟电压信号与连接到变频器mm440的三相交流电的频率一一对应,调节控制电压信号就可以调节三相交流电的频率。系统是以供水管网的供水压力为控制对象而构成的,其设计是按照两个电机就可以完全满足供水要求。图3 变频恒压供水系统的控制原理框图4 硬件1 主电路变频恒压供水系统就是利用异步电机拖动水泵的。系统的主电路由电源开关q、熔断器fu、交流接触器km、kr等组成,采用了一台变频器切换控制两台电机,1#电机和2#电机可以在工频和变频状态下进行切换,交流接触器的通断由s7-200的输出口控制。主电路如图4所示。图4 系统主电路图2 控制电路控制电路主要由plc(s7-200)、变频器mm440等组成,plc外围电路接线图如图5所示。总电源开关为q,sb0为plc的程序启动按钮,与plc的0输入口相连接,当按下sb0时,0为“1”,plc程序启动。k1为系统的自动模式开关,当k1接通时,1为“1”,交流接触器km1闭合,系统自动运行。当变频器的频率达到上限频率时,5为“1”,1#泵和电机切换到工频状态下,2#泵和电机变频启动。当变频器的频率达到下限频率时,6为“1”,2#电机停止运行,1#电机由工频切换到变频状态下。5和6的状态由变频器输入。k2为系统的手动模式开关,当k2接通时,2为“1”,交流接触器km1断开,系统不能自动运行,用户可以根据需要接通k3或k4来选取1#电机或2#电机工频运行。km1为控制1#电机和2#电机在自动模式下运行的交流接触器,km2为控制1#电机在变频下运行的交流接触器,km3为控制1#电机在工频下运行的交流接触器,km4为控制2#电机在变频下运行的交流接触器,km5为控制2#电机在工频下运行的交流接触器。图5 plc外围接线图5 程序设计1 plc程序设计plc程序设计的主要流程如图6所示。合上开关q,按下起动按钮sb0,plc程序复位。当合上开关k1,1为“1”,系统在自动模式下运行,交流接触器km1接通,系统将根据程序跟踪设定供水压力。图6 主程序流程图当用户用水量递增,变频器达到频率50hz,供水压力还没有达到设定的供水压力时,mm440输出高电平到5。此时,1为“0”, 2为“1”,交流接触器km2断开,km3接通,1#电机由变频切换到工频。定时器计时3s,变频器停止,变频器的频率由最高频率50hz逐渐下降,3s后3为“1”,2#电机接到变频器开始变频运行。设置延迟时间主要原因是让变频器的频率下降,软启动静止的2#电机,减小电机启动电流,避免电机烧毁。当用户用水量减小,变频器达到下限频率30hz,供水压力还是高于设定的供水压力时,mm440输出高电平到6。此时,4为“0”,km2断开,2#电机退出变频并逐渐停止。同时1为“1”,2为“0”,交流接触器km2接通,km3断开,1#电机由工频切换到变频。下限频率设定在30hz主要原因:在供水系统中,转速过低时会出现水泵的全扬程小于基本扬程(实际扬程)形成水泵“空转”的现象。在多数情况下,下限频率应定为30hz~35hz。当合上开关k2,系统在手动模式下运行,交流接触器km1断开。用户可以根据需要,合上开关k3,交流接触器km3接通,选择1#电机在工频下运行。合上开关k4,交流接触器km5接通,选择2#电机在工频下运行。2 变频器mm440的参数配置变频器mm440主要使用的是模拟输入口ain1+和ain1-,模拟电压信号输入后通过得到数字信号。由plc模拟输出口输出模拟控制电压信号,输入到变频器的模拟口,变频器的频率和控制电压一一对应。系统使用变频器的模拟端口,最高频率应该设置为50hz,最低频率为30hz。mm440的参数配置如附表所示。附表 mm440的参数配置6 结束语应用西门子plc(s7-200)内部的pid模块和变频器mm440的无极调速控制恒压供水系统,高效节能,调速供水效果突出,抗干扰能力强。同时采用变频器对电机实行软起动,减少了设备损耗,延长了水泵、电机设备的使用寿命。以供水水压为控制对象的闭环控制,稳态误差小,动态响应快,运行稳定。实验效果表明,采用plc(s7-200)和变频器mm440构成的变频恒压供水系统,具有很强的实用性,体现了变频调速恒压供水的技术优势,为供水领域开辟了切实有效的途径。参考文献[1] 李光,谢欢,王直杰 高压变频器模拟量控制电路及功能设计[j] 电气传动自动化,2008,38(7):63-[2] 彭旭昀 一种基于变频器pid功能的plc控制恒压供水系统[j] 机电工程技术,2005,34(10):54-[3] 陈新恩,王永祥 基于s7-200的变频调速恒压供水系统[j] 制造业电气,2006,25(6):37-[4] 朱玉堂 变频恒压供水系统的研究开发与应用[d] 杭州:浙江大学,

1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。 2、论文格式的目录 目录是论文中主要段落的简表。(短篇论文不必列目录) 3、论文格式的内容提要: 是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、论文格式的关键词或主题词 关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。 5、论文格式的论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容: 提出问题-论点; 分析问题-论据和论证; 解决问题-论证方法与步骤; 结论。 6、论文格式的参考文献 一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。 中文:标题--作者--出版物信息(版地、版者、版期) 英文:作者--标题--出版物信息 所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。城市水资源可持续利用的方针与对策 摘要:现实情况表明,水资源短缺已越来越成为我国发展的制约因素,另一方面我国在水资源开发利用上还有一定的潜力;如果不尽快把解决水资源短缺的问题全面地提到议事日程上来,我国许多地区特别是城市将面临水危机的严重威胁。这方面,党和政府的方针应是:以节水为先、治污为本、多渠道开源,这是关系到我国社会经济可持续发展的大计。为了进一步贯彻落实上述方针,根据我国城市与节水存在的问题,应采取相应对策及关键技术。 关键词:城市水资源 可持续利用 方针与对策   现实情况表明,水资源短缺已越来越成为我国社会经济发展的制约因素,另一方面我国在水资源开发利用上还有一定的潜力;如果不尽快把解决水资源短缺的问题全面地提到议事日程上来,我国许多地区特别是城市将面临水危机的严重威胁。这方面,党和政府的方针应是:以节水为先、治污为本、多渠道开源,这是关系到我国社会经济可持续发展的大计。为了进一步贯彻落实上述方针,根据我国城市与工业节水存在的问题,应采取相应对策及关键技术。 1 对策  1 把节约用水放在解决我国城市水资源问题的优先地位,并作为一项国策,大力加强节水宣传,增强全民节水意识  以节水为先,即将节水作为解决城市水资源问题的基本出发点和首要对策。从水资源可持续利用高度看,节约用水是一项具有战略意义的长期任务,应通过坚持不懈的节水宣传教育,在全民中树立对水资源的忧患意识,使节水成为全民行动和社会风尚,使我国逐步成为节水型社会的国度,其潜在作用是深远的。   应特别注重对儿童和青少年的节水教育,开展多种形式生动活泼的宣传教育活动。2 加强全国城市与工业节水工作统一领导与城市与工业节水是一项涉及面广、情况复杂、政策性与技术性极强的工作,应实行在全国水资源主管部门统一领导下的各有关与行业主管部门分工负责的。以克服目前存在的政出多门、管理松驰、无序状态,使节水工作纳入科学的、以全局利益为重的统一协调的管理轨道。3 全面制定和实施城市与工业节水规划与计划在科学分析评价全国、各地区和城市水资源条件与用水(节水)状况的基础上,结合社会经济发展要求、城市和工业生产用水特点,自上而下地制定全国及各地区的城市与工业近远期节水规划。规划应明确水资源供需平衡情况、节水目标、节水指标、节水计划与措施。更为重要的是应将节水规划纳入相应的国民经济规划或经济建设发展计划、分步实施。节水规划目标或计划指标应列入相应国民经济序列,定期审查公布。4 加强立法,统一制定有关节约用水的、法令和条例规定等,建立相应的节水技术法规体系依法治水管水,是依法治国的重要组成部分。节水的统一立法,是改变目前“多龙治水”、政出多门而又无法可依、管理松驰的无序的状态,将节水工作纳入法制轨道的重要步骤。随节水工作的深入发展,原有技术法规在数量和技术上已日显不足,为此须从我国国情、城市与工业行业实际情况和节水实践经验出发,制定一系列有关节水的技术法规体系,包括标准、规范、规程、方法、指标、规定等,使之与节约用水的有关法律、法令和条例等配套实施,以便将节水工作纳入科学化、制度化的轨道。其中至少应包括:(1)基础性节水技术法规,如名词术语定义,节水考核指标定义、计算方法,节水指标体系等;(2)节水统计数据与考核指标的上报、审核规程及分析评价制度;(3)水量平衡测试方法、规程;(4)企业用水合理化分析评价方法及实施办法;(5)循环用水和冷却塔使用管理规定;(6)城市与工业废水回用(包括中水回用)规定;(7)冷却塔、循环冷却水系统及废水回用(包括中水回用)系统水质指标;(8)节水装置、器具使用规定;节水装置、器具质量审查标准、方法及审查办法。5 水资源化,建立科学合理的水费体制水资源市场化是推动节水工作最直接、最有效、最便捷的对策之一。水资源是国有资源,但从市场经济观点看,作为一种特殊商品,应有偿使用。为此应改变传统计划经济用水模式与状态,发挥经济杠杆的作用。其关键是,建立科学合理的城市与工业水费体制,以促进水资源的合理开发与利用。水费体制的建立是水资源市场化的核心,应兼顾水的经济、与社会效益。水费体制包括水费类别、标准(基准)系列及收费制度。应改变目前简单化的水费类别、比较单一的水费标准,建立各种水费类别与标准,全面推行浮动、累进收费制度。水费体制的建立,应在国家有关领导部门统一领导下有计划地逐步推行,应采取系统优化与社会公平原则,应考虑不同地区及其城市的水资源特点,应有利于提高城市供水部门的自我发展能力,促进城市供水事业的发展、水资源利用和水污染防治的良性循环。水费体制的建立是一项社会性、政策性、技术性极强的综合性课题,应专门立项研究。6 在工业节水中,研究引入节水机制——激励机制与制约机制目前,在我国绝大多数工业生产中用水成本不及1%,因此在经济杠杆尚不能充分发挥作用之前,在工业节水中引入节水机制具有特殊重要意义。对生产者运用节水鼓励性对策,以激励其节水积极性和创造性,增强其节水的主人翁观念;对生产管理者,通过运用经济杠杆和实行节水计划目标责任制等,以加强约束。这样,可以补充用水(节水)计划管理的不足。工业节水的激励机制和制约机制具有丰富而深刻的内涵,应作为节水管理科学课题,加强研究。7 提高工业用水效率提高用水效率是工业节水的核心。从广义上讲,它体现了从提高用水系统的重复利用率、企业改革、发展生产经济规模、生产工艺技术进步、到实行清洁生产和科学管理等所产生的全部节水效果。因此,提高工业用水效率是一项涉及面广、科学技术性强和影响深远的系统工程。它与一个国家经济发展水平的提高同步,不可能一蹴而就。从总体上讲,提高工业用水效率,近期应侧重于系统节水和管理节水,以后应逐步把节水工作的重点转向工艺节水。有关技术措施后述。8 鼓励和提倡利用城市污水(处理回用水,包括中水)、其它低质水和海水回用水、低质水和海水的利用,均会在不同程度上受到水质、可利用范围、地点或地域等客观条件的限制,应因地制宜地判别其适宜的技术经济条件,解决好有关技术、经济、政策、管理以至社会问题,应在取得经验的基础上逐步推行。9 控制污(废)水对水环境的污染,改善水源水质10 以科技为先导,加大城市与工业节水的科技与资金投入城市与工业节水具有丰富的科技内涵。从发展观点看,不加强节水的科技导向和投入,将难以推动节水工作向深入持续方向发展。另一方面,单纯依靠目前节水技术力量也难以承受日益复杂的综合性很强的节水任务。因此,必须提高节水人员素质,加强科学技术力量的横向联合,此外必须加大节水资金投入,注重节水技术经济分析,以提高节水经济效益。上述各项对策是互相关联的整体,采取这些对策是我国城市与工业集约化发展的必由之路。 ;2 关键技术1 加强节水技术基础工作技术基础工作薄弱,至今仍是全国、各城市和工业节水系统的突出问题,而加强节水技术基础工作又是作好城市与工业节水工作不可逾越的首当其冲的重要环节。其主要内容有:(1)提高节水基础数据质量节水基础数据直接关系到节水统计、分析、评价是否正确和判断的准确性。这方面须迫切解决的问题是: · 按“国民经济行业分类标准”和相关统计口径,严格进行节水统计中的行业分类; · 统一节水名词术语、节水考核指标、指标计量单位与计算方法; · 通过统一的、上报、汇总和审核,确保统计资料的正确性、完整性和连贯性; · 分析、筛选、审定各水平年(1985、1990、1995、2000年)的基本节水考核指标数据与节水水平。 (2)建立较完整的基础数据库 其中应包括有关水资源开采利用数据、相关宏观指标、城市和行业生产经济技术指标、用水节水统计数据、节水考核指标等,使资源共享。 (3)建立各城市、各工业行业和企业的用水、冷却水、回用水系统技术资料库、冷却塔技术资料库。 2 完善并加强水量平衡测试工作,开展企业用水合理化分析水量平衡测试是开展企业节水工作的基础。原来的水量平衡测试成果已逐渐失去实际应用价值,应在新方法和规程下定期开展水量平衡测试工作,并切实进行用水合理化分析,判定实际用水效率与节水潜力,为开展企业节水工作提供科学依据。3 提高冷却水循环利用率和冷却效率提高冷却水循环利用率和冷却效率是系统节水的主要途径。 应根据有关法规对冷却水循环系统和冷却塔实行科学监督,以提高冷却水循环利用率和冷却效率。按文献规定目标,我国各类城市的有关指标如表1所示。我国各类城市冷却水系统效率指标    表1 指标 Pr(%) Pcy 冷却效率(%) 浓缩倍数 城市类别 2000 2010 2000 2010 2000 2010 2000 2010 一 75 85 85~90 95~97 65~75 75~80 6~0 1~5 二 70 80 80~85 92~95 55~65 6~75 1~5 6~0 三 65 75 ≥80 ≥90 ≥55 ≥60 5~0 1~5 注:城市类别:一类为直辖市、开放城市、重点城市;二类为省会城市,日供水量大于40×104m3/d的城市;三类为其余城市为实现上述目标,须采取的主要技术措施有: · 扩大冷却水循环利用范围,这对大量的小型企业尤为重要; · 关停或改造一批质量或性能不合格的冷却塔;   · 开发、推广使用新型、高效(冷却效率>65%、吹散损失<2%~0%)、低噪音(<50 dB)冷却塔; · 推行循环冷却水处理,提高冷却水处理率,这是提高冷却效率和浓缩倍的关键; · 全面监测不同地区不同季节冷却塔运行情况,加强运行管理; · 研究开发适合于不同水质条件、气象条件下的水质稳定、杀生和旁流处理技术——处理方法、设备与水处理剂,并分析确定其优化运行技术经济条件; · 研究推广冷却水系统(包括空调系统)的清洗技术,提高冷却效率; · 研究运用高效热交换器及其优化组合技术。 4 因地制宜地研究推广各种节约循环冷却水量的其它技术如空气冷却、汽化冷却、人工制冷冷却、大气冷源技术和物料换热技术。这些技术在一定条件下可大量减少冷却水量或不用水冷却,具有良好的应用前景。5  提高废水回用率对于工业企业,废水回用是仅次于冷却水循环利用的另一个主要节水途径。 目前我国废水回用总水量不过5×108 m3/a,实际回用率很低,为此应采取以下技术措施: · 提高工业废水的回用范围,例如将其用作冷却补给水、锅炉补给水、空调除尘水、洗涤水、清洗水、冲渣(灰)水、熄火降温水和厂区部分生活杂用水等。从一定意义上讲,在工业企业内部进行废水回用比外部污水回用经济可行。 · 研究开发一系列经济实用的工业废水或其它废弃资源的减污排放、处理回收或回用技术。 · 研究开发经济适用、高效的中小型工业废水处理装置,特别是含油、重金属、有毒物质和高浓度有机污染物的废水处理装置,提高这些废水的回用量,以减少污染负荷。 · 研究开发工业回用水系统水质稳定、杀生技术。 · 对工业回用水系统的运行情况实行监控,加强运行管理。 · 扩大城市污(废)水处理回用规模和范围。 扩大城市污(废)水处理回用范围和规模的关键技术措施是: · 结合不同地区和城市的具体情况,进行城市污(废)水回用的技术经济条件分析,确定污(废)水直接回用的范围和规模,作为制定污水回用发展规划的依据; · 制定不同回用水水质标准,研究确定回用水(特别是与人体接触的回用水)安全评价方法;· 研究开发适用于不同地区和条件的适用经济的污(废)水处理特别是深度处理技术及装备;· 研究、推广安全可靠的中水处理技术和设施;· 研究、建立城市、小区和物的分质供水系统,其中城市分质供水系统应与工业企业、市政设施与灌溉分质供水系统相配套; · 污(废)水回用系统的监管技术措施。 从我国城市与工业废水回用发展情况看,除受到废水处理率(包括合格率目前二级生化处理i<6%)低和一些客观条件限制外,归根到底将受到经济条件的限制,估计回用率的年递增率会远低于20%。在考虑废水回用时,应考虑对人体健康和生产的影响。 6  扩大海水、低质水可利用范围,建立各类分质供水系统据估计,我国1995年海水利用总量约为100×108 m3/a,2010年预计达350×108 m3/a,后者还远低于目前日本、美国海水利用水量。为此,要研究经济、有效、安全可靠的海水利用技术,如管路、冷却系统防腐、海生物防治、水质稳定技术及海水淡化技术。应积极研究开发海水循环冷却专用技术以取代海水直流冷却系统,同时应加强相应专门技术研究,如专用水质稳定剂、海水冷却塔等。此外,应开展海水冲厕污水处置问题的研究。7  开展工业生产工艺节水技术研究近期可结合工业企业改革、结构调整和技术改造,加快工艺节水步伐。从长远考虑,应注重下列因素对工业节水的影响:(1)经济规模与劳动生产率的提高; (2)生产工艺方法、技术、流程与装备的发展进步; (3)原料路线与政策的改进或改变; (4)清洁生产技术的实施; (5)工业生产的科学管理水平提高; (6)因素变化。 以上因素都可对工业生产用水情况产生深远影响,而且从发展趋势看绝大多数因素的变化都会在不同程度上不断地促进水资源合理利用,减少水污染,致使单位产品(或产值)用水量、取水量逐渐减小,使水环境得以改善。对此,应按行业开展专门研究。 8  研究开发性能优良的节水器具采用节水器具,一般可节水10%~30%。  我国目前节水器具多处于低水平、盲目、重复研制开发状态,近10年来几无进展,质量低劣,因此有必要有组织地进行研究开发,其重点是应用范围广、使用频繁、易造成浪费的用水器具。例如,开发推广小容量(6 L)或无“介质”的成套卫生洁具、限压节流水龙头、延时自闭水龙头、冷热水洗浴水龙头等。应坚持对节水器具的基本要求。 9  加强对重要节水问题的技术经济分析、研究,提高节水工作水平和节水效益节约用水是关系到资源、环境、人民生活和经济的大事,属跨行业(专业)的综合技术领域。很多节水问题的决择,都须从技术、经济、社会以至政策等方面权衡利弊、得失,而技术经济方法则是在这类问题的多方案比较中取得最佳效果的重要方法和手段。当前,对下列有关节水问题的分析研究具有普遍意义,例如:· 地区或城市范围内,水资源的优化配置;· 地区或城市在长距离调水与节约用水之间的权衡;· 地区或城市节水潜力分析、节水目标的确立、节水基本对策的制定及其定量评价;· 城市节水规划的制定;· 地区、城市或企业范围,循环用水、污(废)水回用及低质水或海水利用中的利弊权衡;· 循环冷却水系统状态优化控制;· 污(废)水回用方式——直接回用与间接回用的选择与协调;· 污(废)水直接回用范围规模与水质指标;· 城市群污(废)水回用与流域污染控制技术分析;· 城市水费体制(水价)研究;· 节约用水技术经济分析方法本身的理论与实践研究

很明显没人会打字到手软的哥们凑字数吧

供水系统论文选题

我这里有资料是从我们学校网里下的

在我国,节电节水的潜力非常大。据有关国际组织发表的资料显示:中国的单位国民经济总产值所消耗的电是美国、德国等的4倍左右,消耗的水是他们的2倍左右。我国的大量用电设备中,风机和泵类电机的耗电量占全国发电量的50%左右,若推广新型电机调速技术,可节电40%左右,即可以节约全国发电量的 1/由于我国人均占有水、电资源相对于别国又少很多,因此,在我国一方面水电供给紧张,而另一方面,水电的浪费又十分惊人。节电节水,不仅潜力巨大, 而且意义深远 近十年来,变频技术的应用在我国有很大的发展,并取得了良好的效果。可以说,变频技术已为大多数用户所接受。但是,不能不指出,我国在变频技术的应用方面,与发达国家的水平尚有很大差距。目前,我国在用的交流电动机使用变频调速运行的仅6%左右,而工业发达国家已达60% ~ 70%;日本在风机、水泵上变频调速的采用率已达10%,而我国还不足01%;在日本,空调器的70%采用了变频调速,而我国才刚刚起步。从这个现实出发,变频技术尚有很大的发展空间,我们应该锲而不舍地做好推广应用工作。 变频控制技术的进步不仅仅是异步电动机结构简单、坚固、易于维护等优点,更主要的是采用变频调速技术的异步电动机的机械特性达到了直流电动机调压调速的特性。由于计算机技术的介入,使得变频器具有丰富的功能和方便好用的特点,因此人们才有可能按照实际要求,自行构成一个适用和可靠的调速系统。 变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,使我国供水技术装备水平从90年代初开始经历了一次飞跃。恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。在实际应用中得到了很大的发展。随着电力电子技术的飞速发展,变频器的功能也越来越强。充分利用变频器内置的各种功能,对合理设计变频调速恒压供水设备,降低成本,保证产品质量等方面有着非常重要的意义。变频调速的特点及分析用户用水的多少是经常变动的,因此供水不足或供水过剩的情况时有发生。而用水和供水之间的不平衡集中反映在供水的压力上,即用水多而供水少,则压力低;用 水少而供水多,则压力大。保持供水压力的恒定,可使供水和用水之间保持平衡,即用水多时供水也多,用水少时供水也少,从而提高了供水的质量。 恒压供水系统对于某些工业或特殊用户是非常重要的。例如在某些生产过程中,若自来水供水因故压力不足或短时断水,可能影响产品质量,严重时使产品报废和设备损坏。又如发生火灾时,若供水压力不足或或无水供应,不能迅速灭火,可能引起重大经济损失和人员伤亡。所以,某些用水区采用恒压供水系统,具有较大的经济和社会意义。 随着电力技术的发展,变频调速技术的日臻完善,以变频调速为核心的智能供水控制系统取代了以往高位水箱和压力罐等供水设备,起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等东西的使用寿命;可以消除起动和停机时的水锤效应。其稳定安全的运行性能、简单方便的操作方式、以及齐全周到的功能,将使供水实现节水、节电、节省人力,最终达到高效率的运行目的。

1 引言 供水系统在人们生活和工业应用当中是必不可少的。随着人们生活水平的提高和现代工业的发展,人们对供水系统的质量和可靠性的要求越来越高。变频能够很好的满足现代供水系统的要求。在变频出现以前,有以下供水方式:(1) 单台恒定转速泵的供水系统这种供水方式是水泵从蓄水池中抽水加压直接送往用户,严重影响了城市公用水管管网压力的稳定,水泵整日不停运转。这种系统简单、造价最低,但耗电严重,水压不稳,供水质量极差。(2) 恒定转速泵加水塔(或高位水箱)的供水系统这种供水方式是由水泵先向水塔供水,再由水塔向用户供水。水塔注满水后水泵停止工作,水塔水位低于某一高度时水泵启动,水泵处于断续工作状态中。这种方式比前一种省电,供水压力比较稳定,但基建设备投资大,占地面积大,水压不可调,供水质量差。(3)恒定转速泵加气压罐的供水系统这种供水方式是利用封闭的气压罐代替水塔蓄水,通过检测罐内压力来控制水泵的开与停。当罐中压力降到压力下限时,水泵启动;当罐中压力升到压力上限时,水泵停止。这种方式,设备的成本比水塔要低很多。但是电机起动频繁,易造成电机的损坏,能耗大。变频不仅克服了过去供水系统的缺点,而且有其自身的优点。此系统采用了先进的s7-200plc和变频器mm440,具有低廉的价格和强大的指令,可以满足多种多样的小规模的控制要求,变频器mm440具有很高的运行可靠性、功能的多样性和全面而完善的控制功能。这种供水方式不仅提高了供水系统的稳定性和可靠性,而且实现水泵的无级调速,使供水压力能够跟踪系统所需水压,提高了供水质量。同时变频器对水泵采取软启动,启动时冲击电流很小,启动能耗小。2 供水系统的基本特性供水系统的基本特性是水泵在某一转速下扬程h与流量q之间的关系曲线f (q),前提是供水系统管路中的阀门开度不变。扬程特性所反映的是扬程h与用水流量q之间的关系。由图1的扬程特性表明,流量q越大,扬程h越小。在阀门开度和水泵转速都不变的情况下,流量q的大小主要取决于用户的用水情况。管阻特性是以水泵的转速不变为前提,阀门在某一开度下,扬程h与流量q之间的关系h=f (q)。管阻特性反映了水泵转动的能量用来克服水泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图1可知,在同一阀门开度下,扬程h越大,流量q也越大,流量q的大小反映了系统的供水能力。扬程特性曲线和管阻特性曲线的交点,称为供水系统的平衡工作点,如图1中a点。在这一点,用户的用水流量和供水系统的供水流量达到平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。当用水流量和供水流量达到平衡时,扬程ha稳定,供水系统的压力也保持恒定。图1 供水系统的基本特性3 变频恒压供水系统的构成及工作原理1 系统的构成变频恒压供水系统采用西门子的plc作为控制器,变频器mm440是频率调节器,和电动机作为执行机构,压力传感器作为控制的反馈元件。plc选用内部控制模块cpu224,模拟量2路输入通用模块、模拟量2路输出通用模块和pid模块。cpu224有14路输入/10路输出,对于小型的控制系统而言够用。pid模块使用方便,在软件中只需要配置pid的每个参数。与mm440的电源输入口连接,经过变频器变频后的交流电接,带动水泵转动。s7-200数字输出口输出控制信号到,两端连接的是工频或变频的,主要起接通或断开与。s7-200的模拟输出口输出控制电压信号给mm440的模拟电压输入口ain1+和ain1-,该控制电压主要调节交流电的频率。压力传感器从供水网络中反馈压力信号,压力信号经过滤波放大后输入给s7-200的模拟输入口。系统的结构如图2所示。图2 变频恒压供水系统的总体框图2 系统的工作原理变频恒压供水系统是由三相异步电动机带动水泵旋转来供水,通过变频器调节输入交流电的频率而调节异步电动机的转速,从而改变水泵的出水流量来调节供水系统的压力。因此,供水系统变频的实质是三相异步电动机的变频调速,通过改变定子供电频率来改变同步转速而实现调速的。的转速为:其中: n0为同步转速;n为转子转速;f为异步电机的定子输入交流电的频率;s为异步电机的转差率;p为异步电机的极对数。由上式可知,当异步电机的极对数p不变时,电机转子转速n与定子输入交流电频率f成正比。当系统启动,运行在自动模式时,此时手动模式无效。系统按照给定的水压进行设定,plc根据给定的水压自动调节交流电的频率,精确跟踪给定的供水压力。在用水量高峰时期,系统的用水量猛增,扬程降低,供水量不足,供水水压下降,1#电机输入交流电的频率会升高,以提高供水水压。当交流电的频率达到最大频率,供水水压仍然小于设定的水压时,1#电机会自动切换到工频状态下,同时2#电机启动并工作在变频状态。在夜间,系统的用水量递减,扬程升高,供水量过大,2#电机会退出变频状态,1#电机由工频切换到变频状态,并不断调节交流电频率,系统最终要维持供水的设定压力。当系统运行在手动模式时,自动模式无效。在自动模式出现问题或系统在维护期间时,系统才会采用手动模式。用户根据需要,可以从plc的输入开关输入信号,选择1#电机或2#电机运行在工频状态。变频恒压供水系统的功能要求:系统的供水压力能够准确跟踪给定供水压力(稳态误差在5%内);可以自动进行自动模式/手动模式切换。系统的控制原理框图如图3所示。压力传感器从供水管网反馈电压信号,电压信号经过滤波放大后送到s7-200的模拟输入口,与给定的供水压力信号比较形成压力偏差信号,经过plc(s7-200)pid模块pi调节后发出控制电压信号,送到变频器mm440的模拟输入调节端口。送到变频器mm440的模拟电压信号与连接到变频器mm440的三相交流电的频率一一对应,调节控制电压信号就可以调节三相交流电的频率。系统是以供水管网的供水压力为控制对象而构成的,其设计是按照两个电机就可以完全满足供水要求。图3 变频恒压供水系统的控制原理框图4 硬件1 主电路变频恒压供水系统就是利用异步电机拖动水泵的。系统的主电路由电源开关q、熔断器fu、交流接触器km、kr等组成,采用了一台变频器切换控制两台电机,1#电机和2#电机可以在工频和变频状态下进行切换,交流接触器的通断由s7-200的输出口控制。主电路如图4所示。图4 系统主电路图2 控制电路控制电路主要由plc(s7-200)、变频器mm440等组成,plc外围电路接线图如图5所示。总电源开关为q,sb0为plc的程序启动按钮,与plc的0输入口相连接,当按下sb0时,0为“1”,plc程序启动。k1为系统的自动模式开关,当k1接通时,1为“1”,交流接触器km1闭合,系统自动运行。当变频器的频率达到上限频率时,5为“1”,1#泵和电机切换到工频状态下,2#泵和电机变频启动。当变频器的频率达到下限频率时,6为“1”,2#电机停止运行,1#电机由工频切换到变频状态下。5和6的状态由变频器输入。k2为系统的手动模式开关,当k2接通时,2为“1”,交流接触器km1断开,系统不能自动运行,用户可以根据需要接通k3或k4来选取1#电机或2#电机工频运行。km1为控制1#电机和2#电机在自动模式下运行的交流接触器,km2为控制1#电机在变频下运行的交流接触器,km3为控制1#电机在工频下运行的交流接触器,km4为控制2#电机在变频下运行的交流接触器,km5为控制2#电机在工频下运行的交流接触器。图5 plc外围接线图5 程序设计1 plc程序设计plc程序设计的主要流程如图6所示。合上开关q,按下起动按钮sb0,plc程序复位。当合上开关k1,1为“1”,系统在自动模式下运行,交流接触器km1接通,系统将根据程序跟踪设定供水压力。图6 主程序流程图当用户用水量递增,变频器达到频率50hz,供水压力还没有达到设定的供水压力时,mm440输出高电平到5。此时,1为“0”, 2为“1”,交流接触器km2断开,km3接通,1#电机由变频切换到工频。定时器计时3s,变频器停止,变频器的频率由最高频率50hz逐渐下降,3s后3为“1”,2#电机接到变频器开始变频运行。设置延迟时间主要原因是让变频器的频率下降,软启动静止的2#电机,减小电机启动电流,避免电机烧毁。当用户用水量减小,变频器达到下限频率30hz,供水压力还是高于设定的供水压力时,mm440输出高电平到6。此时,4为“0”,km2断开,2#电机退出变频并逐渐停止。同时1为“1”,2为“0”,交流接触器km2接通,km3断开,1#电机由工频切换到变频。下限频率设定在30hz主要原因:在供水系统中,转速过低时会出现水泵的全扬程小于基本扬程(实际扬程)形成水泵“空转”的现象。在多数情况下,下限频率应定为30hz~35hz。当合上开关k2,系统在手动模式下运行,交流接触器km1断开。用户可以根据需要,合上开关k3,交流接触器km3接通,选择1#电机在工频下运行。合上开关k4,交流接触器km5接通,选择2#电机在工频下运行。2 变频器mm440的参数配置变频器mm440主要使用的是模拟输入口ain1+和ain1-,模拟电压信号输入后通过得到数字信号。由plc模拟输出口输出模拟控制电压信号,输入到变频器的模拟口,变频器的频率和控制电压一一对应。系统使用变频器的模拟端口,最高频率应该设置为50hz,最低频率为30hz。mm440的参数配置如附表所示。附表 mm440的参数配置6 结束语应用西门子plc(s7-200)内部的pid模块和变频器mm440的无极调速控制恒压供水系统,高效节能,调速供水效果突出,抗干扰能力强。同时采用变频器对电机实行软起动,减少了设备损耗,延长了水泵、电机设备的使用寿命。以供水水压为控制对象的闭环控制,稳态误差小,动态响应快,运行稳定。实验效果表明,采用plc(s7-200)和变频器mm440构成的变频恒压供水系统,具有很强的实用性,体现了变频调速恒压供水的技术优势,为供水领域开辟了切实有效的途径。参考文献[1] 李光,谢欢,王直杰 高压变频器模拟量控制电路及功能设计[j] 电气传动自动化,2008,38(7):63-[2] 彭旭昀 一种基于变频器pid功能的plc控制恒压供水系统[j] 机电工程技术,2005,34(10):54-[3] 陈新恩,王永祥 基于s7-200的变频调速恒压供水系统[j] 制造业电气,2006,25(6):37-[4] 朱玉堂 变频恒压供水系统的研究开发与应用[d] 杭州:浙江大学,

电气化铁路供电系统论文摘要

电气%20概论&lm=0&od=0

电气化铁道电能质量综合控制研究摘 要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。关键词:电气化铁道;电网;电能质量;综合控制1 前言中国的电气化铁道总里程已经突破2·4万公里,跃居世界第二。电气化铁道具有运载能力强、行车速度快、节约能源、对环境污染小等优点,在现代国民经济发展中起着举足轻重的作用。但是,由于电气化铁道牵引负载所具有的随即波动性和不对称性,其给公共电网带来的诸如负序电流、谐波以及无功功率等电能质量问题也引起了极大的关注。研究如何利用有效手段治理电气化铁道牵引负载所带来的一系列电能质量问题,确保电网中其他电力设备的安全经济运行具有重大意义。2 电气化铁道牵引供电系统2·1 概述我国的动力供电电网电压一般为110kV或者220kV,通过牵引变压器转换为27·5kV作为牵引动力机车的供电。现在普遍流行的牵引变压器种类主要有单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引变压器、Scott变压器等。我国电气化铁道采用工频交流50Hz三相供电单相用电,其负荷牵引电力机车的功率大,速度、负载状况变化频繁,且具有不对称的特性,导致牵引电网具有功率因数低、谐波含量高、负序电流大等特点,不但自身损耗大,而且对公共电网及铁路沿线的其他电力设备也带来严重危害,必须采取有效措施加以治理[1]。2·2 单相变压器牵引供电网采用单相牵引变压器的牵引供电系统拓扑结构如图1所示[2]。单相接线牵引网采用单相变压器供电,供电方式又分为单相接线方式和V-V接线方式。单相接线牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。另外,单相牵引变压器要按全绝缘设计制造。而单相V-V接线将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。两变压器次边绕组,各取一端联至牵引变电所两相母线上。而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。这时,两臂电压相位差60°接线,电流的不对称度有所减少。这种接线即通常所说的60°接线。2·3 三相Y-D11变压器牵引供电网采用三相Y-D11牵引变压器的牵引供电系统拓扑结构如图2所示[2]。三相Y-D11结线牵引变压器的高压侧通过引入线按规定次序接到110kV或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27·5kV的a相和b相母线上。由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60°,也是60°接线。因此,在这两个相邻的接触网区段间采用了分相绝缘器。3 SVC静止型动态无功补偿装置3·1 SVC的发展静止型动态无功补偿装置SVC是一种先进的高压电网动态功率因数补偿装置。它通过提高功率因数来节约大量的电能,同时又起到减少电网谐波、稳定电压、改善电网质量(环境)的作用。20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。SVC作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定3·2 SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图3。它由1台TCR、2台TSC以及2个无源滤波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置。TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。图3中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角α可以改变电感中通过的电流。α的计量以电压过零点为基准,α在90°~180°之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。导通角在90°~180°之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量[3]。TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切除或者投入电容器。这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。由于TSC中的电容器只是在两个极端的电流值之间切换,因此它不会产生谐波,但它对无功功率的补偿是阶跃的。TCR和TSC组合后的运行原理为:当系统电压低于设定的运行电压时,根据需要补偿的无功量投入适当组数的电容器组,并略有一点正偏差(过补偿),此时再利用TCR调节输出的感性无功功率来抵消这部分过补偿容性无功;当系统电压高于设定电压时,则切除所有电容器组,只留有TCR运行。4 电网电能质量综合控制与治理4·1 谐波抑止与无功补偿利用SVC动态无功补偿装置对牵引供电系统的谐波和无功进行综合治理的关键是SVC最大无功补偿量的确定和滤波器支路的设计[3]。SVC最大无功补偿量Qsvc应该和设计线路牵引负荷的大小相适应,应该按电气化铁道牵引负荷的最大有功需求以及补偿后对装设地点功率因数或在最大无功冲击时的最大电压损耗的要求来确定,具体可以按照式(1)、(2)来计算。QSVC=(tanφ1-tanφ2)Pmax(1)式中,φ1、φ2分别为补偿前后110kV电源测功率因数角;Pmax为电铁负荷最大有功需求。QSVC=Qfmax-ΔU%Xs(2)式中,Qfmax为装设地点最大无功冲击;ΔU%为装设地点最大电压损耗要求;Xs为系统阻抗。要想达到理想的谐波抑止效果,必须综合考虑FC滤波支路的设计,既要保证装置的安全运行,又要达到预计的理想效果。在实际设计中,首先需要根据供电臂中所含的谐波分量来确定FC滤波支路的组成。由于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大的比重,所以FC滤波支路一般由3、5、7次单调谐滤波器构成。当最大无功补偿容量和滤波支路的组成确定后,如何将需补无功容量合理分配到各滤波支路中,这是非常重要的问题。如果各滤波支路的容量分配不合理,一方面会使设备安装总容量偏大,另一方面有可能因为某此滤波回路补偿功率偏小而发生过负荷,对设备安全运行造成影响。一些著名的电气公司采用的一些算法如下[6]:如西门子公司的无功功率补偿按式(3)分配Qc(h)=QSVCIh/h∑Ih/h(3)式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih为供电臂第h次谐波电流。BBC电气公司按照式(4)分配无功功率Qc(h)=QSVC∑Ih(4)AEG电气公司则按照式(5)分配无功Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5)式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、13次滤波支路分配的补偿容量。4·2 负序电流补偿牵引电力机车产生的大量负序电流给电网中其他的电力设备的安全、经济运行带来极大影响。SVC静止动态无功补偿装置在补偿负序和末端电压上有着相当高的效率。工程应用上可以选择在电网系统和负荷上都安装SVC[5]。在电网系统端安装应用SVC来补偿负序电流的原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采用哪一种牵引变压器,负序补偿的实现分为如下两步:(1)电力因数修正。通过安装电容器件,使得每相负荷都为电阻性。(2)参照斯坦梅茨法则(Steinmetz′s laws),AB相的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA相的电感性负荷G/ 3互相对称。电流环路图和相位图分别如图4、5所示:从图5可以明显看到线电流I·A,I·B,I·C是对称且正序的,BC相和CA相之间的阻抗负载也可以做到类似的对称,因此系统中的所有负序电流都可以被补偿而消除。现在问题的关键是如何随着牵引负荷的起伏动态地控制补偿需要的电容和电感器组。急于数字信号处理器(DSP)的固定电容(FC)和晶闸管控制的电抗器(TCR)的组合得以广泛应用,如图6所示。得益于DSP对数据信息的快速处理,补偿所需的电容和电感参数可以被快速、精确计算得到。5 结论与展望本文提出的基于静止动态无功补偿装置(SVC)的电气化铁道牵引电网电能质量综合控制与治理原理与方案具有重要的工程意义。电气化铁道的电能质量是一个突出且严峻的课题与难题,要求我们不断探求新的综合补偿方法,来综合控制与治理影响电能质量的无功、谐波、负序等因素,以提高电网电能质量,确保电网安全、经济运行。参考文献[1] 李群湛电气化铁道并联综合补偿及其应用[M]北京:中国铁道出版社, [2] TB/10009-2005铁路电力牵引供电设计规范[S][3] 王兆安谐波抑止和无功功率补偿[M]北京:机械工业出版社,[4] 铁道部电气化工程局电气化勘测设计院电气化铁道设计手册牵引供电系统[M]北京:中国铁道出版社, [5] 安鹏,张雷,刘玉田电气化铁道对电力系统安全运行的影响及对策[J]山东电力技术, 2005, (4): 16-[6] 马千里动态无功补偿装置在牵引变电所的应用[J]电气化铁道, 2008(4)

接触网供电或架空接触网,台湾称高架电缆或架空电缆,是电气化铁路常用的两种供电网络方式之一。另外一种供电方式是第三轨供电。在铁路和城市轨道交通系统中,架空接触网只有导线的一个电极,电力机车通过集电装置取电,再通过金属轮轨回流到电网中。在无轨电车等使用胶轮的系统中,架空接触网有两根互不接触的两根导线,通过两个集电杆取电。

相关百科

热门百科

首页
发表服务