首页

> 论文期刊知识库

首页 论文期刊知识库 问题

力学物理论文选题

发布时间:

力学物理论文选题

首先,题目不能太大。其实,题目太大以后,往往会因力不从心,容易失败。这里的"太大"是指:研究的问题"外延"太大,几乎是无所不在其中--不是概论、就是原理、不是数学、就是物理!这种文章表面上看起来很大气,可往往给人言之无物、华而不实之感。  同样地,如果选择的题目太小了,则显得轻而易举,不费力气,也不利提高。  当然 ,题目的大小,当然也不是绝对的,大题可以小作,小题可以大作。关键还在于如何确定具体的论证角度。  一般来说,大题目写起来容易空泛,这往往是由于学力不足,无法深入,写少了象蜻蜒点水,如浮光掠影;写多了则显得又臭又长。  相反,如果抓住一个重要的小题,能够深入本质,切中要害,从各个方面把它说深说透,有独到的新见解,那论文就一定有份量。  在选题时一般要注意:它的实用性、互异性、准确性、突破性等等  三、 材料要充分  选材是否合理是文章成败的关键。  写论文从整体构思,到题目确定,到论证过程等等,都不能离开选材--客观的资料。选材的目的,是采众家之长,成一已之见。因而,必须注意以下几个方面问题:  如何确立论点 即通过资料的收集、汇总、整理,把与自己的想法吻合的论点、论据、论证方法等挑选出来,并且从新的视角,予以新的观察。  如何独树一帜同类资料中,不同作者自有其不同的阐述与见解,我们可以把其中富有个性的典型论据、体现各自特点的合理论证,摘录出来,从而为自己独树一帜提供保证。  如何表现自我不少文章大同小异,因而,有关资料内容的交叉争议之点,往往也是文章的价值所在,关键之处。如果我们注意把这方面的资料整理出来,对于形成自己的主见,确定文章的论证角度和发展方向,则大有裨益。  如何精耕细作不少文章由于种种原因,原作者只是提出了问题。并未作详细而中肯回答。如将文中略写部分归拢在一起,加以扩充分析,我们会从中受到启发,从而修正原有的选题方向,对问题作出定向、定度的思考和研究。  总而言之,选材时,一定要注意不去作大而无当的联系和比较。必须有选择、有重点地找一些与我们的论点有关的东西来作对比研究,以便从中提炼出自己的见解。  四、 思路要清晰  在写论文之前,我们不妨先拟好一个写作提纲,如有可能最好是来一个初稿,然后再动手。  提纲可以帮助我们树立全局观,从整体出发,去检验每一个细节所占的地位,所起的作用,展现相互间的逻辑联系是否得当,各个部分之间的比例是否和谐,每一个部分、每一环节是否都是为全局所需要,是否丝丝入扣,配合默契,是否都能为主题服务……  初稿提纲只是论文的大致轮廓,不可能对每一细节都考虑周密完善,因而可以先写一个初稿。有了它,很可能发现原来提纲中某些设想有不恰当之处,这时就应加以调整或修改;对于有错误的论点、论据,或发现新的论点、论据,还应及时抽掉与增补,使之逐步完善。  初稿的写作通常有两种写法:  (一)、按提纲的顺序分段进行,它可以便文章的格调、风格前后保持一致,前后衔接紧凑、自然,避免旁逸斜出,防止语言、文字上的重复;  (二)、按内容的熟悉程度分段进行,这种写法有利于作者积极思考,便于捕捉创作的灵感。  五、 表达要准确  修改--论文的后期制作。反复推敲出佳句,精心修改得华章。  只有反复推敲和字斟句酌,文章才会显得具体、准确、生动,才能恰如其分地表述自己的教育、教研成果。  修改的范围可大可小,既可以来一个"亡羊补牢"--是发现什么问题,修改什么问题,通过材料的增删,使文章血肉丰满,使观点立之牢固,并与材料达到和统一;又可以"彻头彻尾"--发现问题,该舍就舍、该去则去,决不估息。在内容上包括修改观点,修改材料,在形式上包括修改结构,修改语言等。  修改观点在初稿形成后,要再看一看全文的基本观点是否正确,说明它的若干个从属论点,是否有失偏颇、带有片面性或表述得欠准确;同时还要关注一下自己的观点是否与别人类似或雷同,有无创意与新意等等。  修改结构从结构上来看,不仅要求论点、论据、论证三者关系处置得当、层次分明、脉络清楚,能使主题内容得到顺畅合理的表达,还要求文章的开头、结尾、段落、层次、过渡、照应、主次、详细等各个环节合理紧凑。  修改语言 要在语言的准确性、学术性、可读性等方面下功夫,文字力求准确、精炼、简洁、专业,努力做到字字珠玑、句句充实。  文章的最后衷心祝愿:每一位读者都成为锦绣文章的主人! ——发表吧

直接去参考下这类的期刊文献,像应用物理,现代物理、生物物理学等这些吧

进我空间看图像

力学物理论文选题方向

进我空间看图像

自己写吧,可以从历史写起

生物力学论文选题

生物力学的应用前景还是挺好的,因为现在的话有很多都是开发新能源嘛,所以说通过生物学也可以研究一下新能源

推荐你去淘宝的:翰林书店,店主应该能下载到这类论文。我去下过,很及时的

生物力学是应用力学原理和方法对生物体中的力学问题定量研究的生物物理学分支。其研究范围从生物整体到系统、器官(包括血液、体液、脏器、骨骼等),从鸟飞、鱼游、鞭毛和纤毛运动到植物体液的输运等。生物力学的基础是能量守恒、动量定律、质量守恒三定律并加上描写物性的本构方程。生物力学研究的重点是与生理学、医学有关的力学问题。依研究对象的不同可分为生物流体力学、生物固体力学和运动生物力学等。生物力学的基本任务是应用物理力学的理论和方法来研究生物和人体在宏观和微观水平上的力学性质和行为,分析发生在生命活动过程中的各种力学现象和过程,了解生物和人体一部分相对于另一部分以及整个机体在空间和时间上发生位移和运动的力学规律。生物力学是一门新兴学科,尽管对其中个别问题的研究有相当悠久的历史。一般认为,1967年在瑞士召开第一次国际生物力学研究会议是该学科诞生的标志。在科学的发展过程中,生物学和力学相互促进和发展着。

浅述滨州地区跆拳道运动员后腿横踢技术   【摘 要】对滨州地区优秀跆拳道运动员与一般跆拳道运动员在实验条件下完成后腿横踢技术动作过程进行对比分析,找出两者之间的差别,对一般运动员进行技术诊断,并通过合理建议使其动作技术达到标准化,缩短教学和训练时间提供理论参考。   【关键词】跆拳道 后腿横踢技术 对比分析      1 前言   跆拳道是传统的体育运动项目,重视武德修养,强身健体是跆拳道运动所推崇的尚武精神。在新世纪下,人们的世界观由以前的保守型逐步转向开放型。娱乐、健身、观赏、刺激性的体育运动随之蓬勃发展。散手以它独特的运动形式也因此成为人们酷爱的运动项目之一。它不仅在国内有着浓厚的文化底蕴,也在世界上引起了越来越多的关注。为社会和国家练就具备优秀品质的建设者,这对青少年尤其具有潜移默化的特殊的教育意义。   2 研究对象与方法   1研究对象   以滨州市跆拳道队女队运动员为研究对象,在实验条件下对她们的后腿横踢技术动作进行拍摄,A均在近几年滨州地区跆拳道比赛中获得过优异成绩。B为滨州地区跆拳道队普通队员   2研究方法   研究主要是通过使用两台日本产Pansonic DP 200Sony摄像机进行三维录像拍摄。一台摄像机是旋转在“运动方向”右边,距受试者约15m处,另一个摄像机放置在受试者左边约15m处,两摄像机主光轴约成90°,高度约为5m。两台摄像机的拍摄频率为25帧/s。为保证图像清晰,采用 1/250s的快门速度。拍摄日期及时间显示于屏幕的左下角。为保证每名受试者动作能够在A机和B机中对应,拍摄中使用一包括25个标记点的树形框架(PEAK公司)型号为003-C,拍摄横踢动作前将框架置于动作区域内并拍摄框架,完毕后,移走框架。每名受试者在做完充分的准备活动后,拍摄10次横踢动作。对每名受试者随机抽取的2次横踢进行了详细分析。运用一台配置为CR7的个人电脑,采用会声会影软件和图像采集卡对所得录像进行剪辑,用美国艾里尔( Ariel Dynamics)公司生产 the APAS System录像解析系统,对运动员A和B后腿横踢技术动作进行分析和研究。在解析过程中,选取摆动腿的3个关节点,其中包括:髋关节、膝关节、踝关节。采用DLT法进行三维分析,X,Y,Z坐标为右手系。运用计算机把技术图像进行数字化处理,并通过运动生物力学分析和研究,给出必要的数学参考模型。解析结果用数字滤波法进行数据平滑,截断频率为8,用Excel对提得数据进行统计,分析髋、膝、踝关节的运动特征。每次踢的分析结果、角变化、速度数据都绘成了曲线,找出他们技术优势与不足。 3 结果与分析   1运动员A与运动员B总体变化规律基本相同   从整体情况来看,运动员A与运动员B的后横踢动作均符合下肢鞭打运动原理。其中小腿先折叠后摆可提高踢腿速度。根据转动惯量理论,I=MR�2。如把整个横踢动作看做腿绕髋关节的转动,则小腿折叠减小了腿的回转半径,也就是减小了腿的转动惯量。这样,在同样大小的髋关节肌肉力矩作用下,根据转动定律,∑M=Iβ。转动惯量越小则获得的转动角加速度越大,同时摆腿角速度越快。在横踢这一多关节连续动作中,同样也存在牵张反射机制。当踢腿时,总是先屈膝,这一动作使以股四头肌为主的主动肌群伸展。主动肌伸展使肌肉拉长并刺激关节感受器,导致随后的动作中肌肉有力的收缩。同时,这里也存在利用肌肉弹性势能的可能性,即当肌肉离心收缩或拉长后,由于弹性势能会很快地产生向心收缩。因此,对于一个高水平的跆拳道运动员来说,使主动肌在收缩前足够地放松,使远侧环节能够更加滞后是一种重要的技术。另外,人体四肢由近端关节至远端关节,各关节所配置的肌肉的强弱,即肌肉的生理横断面逐渐减小。在生物力学中把关节处所配置的肌肉生理横断面大的称大关节,反之称小关节。这与人体活动时各关节所遇到的阻力矩由近端至远端依次减小的情况是完全一致的。运动中当需要克服大阻力或需要表现出较高的动作速度时,肢体各关节的肌肉虽然都同时用力,但其中大关节总是首先产生活动,并依据关节的大小表现出一定的先后顺序。依据关节大小表现出大关节首先发力,以克服环节或肢体的惰性,便于环节或肢体的启动;中等关节次发力,便于环节或肢体进一步加速;小关节最后发力便于控制环节或肢体的运动方向和运动幅度。因此,在跆拳道的横踢动作中应严格遵循这一规律,否则,必然造成动作结构错误,动作幅度、速度、力度受限,身体稳度降低以及增大动作预兆等诸多负面结果。总的来说,运动员A与运动员B均符合以上原理,但是他们之间又存在着一定的差距。   2运动员A与运动员B髋关节和膝关节角度变化的对比分析   在踢腿动作中,首先膝关节屈曲小腿后摆,之后小腿前摆向目标踢出。其中膝角升高和降低曲线坡度都很陡,这表明横踢动作中屈膝与伸膝具有较高的角速度,也就是说,膝关节屈伸肌的作用同样重要。这表明,踢腿动作中,首先大腿向前摆出,而小腿后摆折叠,然后,当大腿摆到一定位置后,大腿制动,小腿前摆踢出,膝关节角度陡然增加。根据这一研究结果可知,跆拳道运动员在横踢过程中正确的膝关节变化是关节角度先变小,再变大,再变小的过程。   4 结论   1跆拳道的横踢动作中,大腿首先加速前摆,膝关节屈曲小腿折叠。当大腿摆至体前目标方向时,股四头肌收缩使小腿踢出。良好的技术特征中由大腿带动小腿踢出,小腿在踢出前应尽量放松。只有这样,才能更好地完成快速、有力踢腿。这一技术动作符合关节活动顺序性原理。   2运动员A的技术动作的完成基本是合理和准确的,对横踢这一技术的理解比较好,在训练中注意加强身体素质的训练,使其技术动作更加完善。   3运动员B的髋关节没有展出去,在提完膝后大腿没有一个明显的制动动作,技术动作完成的不准确。      参考文献:   [1]李刚散手击打力之探讨[J]湛江:湛江师范学院学报(自然科学版),1999,20(2)   [2]刘庆华,范伟大学生初学散打运动损伤的特点及原因[J]兰州大学学报(社会科学版),2001,29:237-   [3]陈育对跆拳道后腿横踢技术的分析与研究[J]安徽体育科技,2000,21(4):19-   [4]卢立招跆拳道比赛技巧的运用和发展特征[J]体育科技,1999,22(1):94-

物理力学论文题目

我大学毕业论文写的是<<电动助力转向系统中传动机构的运动学和动力学分析与比较>>,如果只是一般性论文,建议写<<生活中的物理>>,<<世纪之交谈物理学发展的方向>>,<<物理学前沿问题探索>>之类的较广泛的题目,这样比较容易,相关资料也比较好找

物理小论文(力学)世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。 据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。 这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。参考文献:张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页72页黄理稳,李学荣《科学技术发展简史》华南理工大学出版社,2002年3月第一版,136页全林,《科技史简论》,科学出版社,2002年3月第一版,213页,214页周建,《没有极限的科学》,北京理工大学出版社,2006年4月第一版,102页吴平,《大学物理实验教程》机械工业出版社,2005年9月第一版,4页

给你几个看看 电八级距的表达 电子的轨道研究 光放大原理的实际设计应用 下载

力学物理论文题目

进我空间看图像

力学分析 运动关系 物理特性 等这方面都可以

自己写吧,可以从历史写起

物理小论文(力学)世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式: 。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。”1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验,向量子力学提出了严峻的挑战。光子箱的结构很简单,一个匣子挂在弹簧称上,一个相机快门一样的装置控制匣子内光子的射出。每次射出光子的时间由快门控制,弹簧称上可以读出整个盒子因光子出射而减少的质量,根据大名鼎鼎的爱因斯坦质能关系: 得出光子的能量,这样原则上时间和能量不存在不能同时确定的问题。 据说玻尔看到这个装置登时口吐白沫,经过紧急抢救时的输氧加上彻夜的苦思之后,玻尔终于搬来了救星,呵呵,那竟然是爱因斯坦本人的广义相对论。发射出光子后,光子箱的质量减少纵然可以精确测出,然而弹簧秤收缩,引力势能减小,根据广义相对论的引力理论,箱子中的时钟会走慢,归根到底时间又是不确定了。 这次轮到爱因斯坦吐血三天了,他费尽心思找来的实验居然成了量子力学测不准关系的绝妙证明,还被玻尔等人堂而皇之的载入他们的论文之中。 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这个我们应该能得出结论:当然存在测不准关系。我们做实验的时候,一旦到了处理实验数据就要同时算出相应的不确定度。这是为什么呢?测量结果都具有误差,误差自始至终存在于一切科学实验和测量的过程之中。任何测量仪器、测量环境、测量方法、测量者的观察力都不可能做到绝对严密,这就使测量不可避免地伴随着有误差产生。因此,分析测量可能产生的各种误差,尽可能可消除其影响,并对测量结果中未能消除的误差做出估计,就是物理实验和许多科学实验中必不可少的工作。但是,我们只能尽力减小误差,却不能消除它。从上面可以看得出,世界上是不存在测得准的东西的,正所谓世界是辩证统一的,事物是相互影响的,既存在相对性,又存在绝对性。事物的测不准关系,就因为它既有相对性,又有绝对性,而我们通常所说的某某物重多少,高多少,等等看似绝对的数据其实是相对的。在某一个时段里,物体趋向于某个值的概率最大,因而我们就把这个值称作在这个时段里的相对准确值,它本是使不可能测准的。事物之间又存在着相互作用,因而又由于相互作用是具体的,因而是有限的,具有一定的认识意义;而本体则是抽象的,因而是无限的,并不具有任何确定的认识意义。所以,世界上并不存在确定的东西。参考文献:张三慧,《大学物理学<量子物理>》清华大学出版社2000年8月第二版34页35页李士本,张力学,王晓峰《自然科学简明教程》,浙江大学出版社2006年2月第一版,68页72页黄理稳,李学荣《科学技术发展简史》华南理工大学出版社,2002年3月第一版,136页全林,《科技史简论》,科学出版社,2002年3月第一版,213页,214页周建,《没有极限的科学》,北京理工大学出版社,2006年4月第一版,102页吴平,《大学物理实验教程》机械工业出版社,2005年9月第一版,4页

相关百科

热门百科

首页
发表服务