首页

> 论文期刊知识库

首页 论文期刊知识库 问题

关于晶体的论文

发布时间:

关于晶体的论文

白内障是首位的致盲疾患,世界范围的主要眼病,全球约有白内障患者2000万。我国约有500万白内障患者。白内障摘除联合人工晶体植入术是目前最好的白内障治疗方案。复明率几乎100%,其中60%以上患者的视力可达到8以上。全球约有500万患者进行了人工晶体的植入。据2004年统计我国每年植入人工晶体的数量已超过50万例。目前已有聚甲基丙烯酸甲酯、硅凝胶以及甲基丙烯酸羟乙酯等多种材料制成的人工晶体上市,临床应用。人工晶体已成为最重要的眼科植入器材。我国人工晶体的生产也已初具规模。人工晶体的研究蓬勃开展。天津医科大学著名的眼科专家袁佳琴教授与人工器官生物材料专家顾汉卿教授长期合作、共同攻关从1989年开始进行人工晶体的研究,先后研制了氟—肝素表面修饰人工晶体,钛表面修饰人工晶体和类金刚石表面修饰人工晶体。这类晶体具有优异的生物相容性与光学特性。长达一年的兔眼和猕猴眼内植入结果表明此类人工晶体不仅植入早期可减少感染、蓝视等并发症的发生。后期还能延缓和减少后发障的发生。他们指导的有关表面修饰人工晶体的博士生论文被评为全国百篇优秀博士生论文。在国家十五攻关项目的支持下,已实现了产业化。他们现在正在研究开发表面修饰软性人工晶体和注射型人工晶体等新产品。为进一步提高人工晶体植入患者生活质量和减少植入并发症的发生而辛勤努力工作。

晶体分为四类:离子晶体,原子晶体,分子晶体和金属晶体 离子晶体由阴阳离子的离子键组成,硬度较大,沸点高,低挥发。像大部分盐类,碱类,还有氯化钠,氢氧化钠,氧化钠之类。 原子晶体是原子间以共价键形成的,硬度更大,溶沸点高,记住典型的内个就行了:金刚石,晶体硅,二氧化硅,碳化硅, 分子晶体是他子间作用力形成的,低熔点低沸点,像氧气,硫啊,氮气,气态氢化物都是

(1)联系工作实际选题要结合我国行政管理实践(特别是自身工作实际),提倡选择应用性较强的课题,特别鼓励结合当前社会实践亟待解决的实际问题进行研究。建议立足于本地甚至是本单位的工作进行选题。选题时可以考虑选些与自己工作有关的论题,将理论与实践紧密结合起来,使自己的实践工作经验上升为理论,或者以自己通过大学学习所掌握到的理论去分析和解决一些引起实际工作问题。(2)选题适当所谓选题要适当,就是指如何掌握好论题的广度与深度。选题要适当包括有两层意思:一是题目的大小要适当。题目的大小,也就是论题涉及内容的广度。确定题目的大小,要根据自己的写作能力而定。如果题目过大,为了论证好选题,需要组织的内容多,重点不易把握,论述难以深入,加上写作时间有限,最后会因力不胜任,难以完成,导致中途流产或者失败。相反,题目太小了,轻而易举,不费功夫,这样又往往反映不出学员通过几年大学阶段学习所掌握的知识水平,也失去从中锻炼和提高写作能力的机会,同时由于题目较小,难以展开论述,在字数上很难达到规定字数要求。此外,论文题目过小也不利于论文写作,结果为了凑字数,结尾部分东拼西凑,结构十分混乱。二题目的难易程度要适当。题目的难易程度,也就是论题涉及的深度。确定题目的难易,也要根据自己的写作能力而定,量力而为。题目难度过大,学员除了知识结构、时间和精力的限制外,资料搜集方面也有局限。这样,就会带来一些意想不到的困难,致使论文写了一半就写不下去了,中途要求另选题目。所以,在这个问题上的正确态度应该是:既不要脱离实际,好高骛远,去选一些自己不可能写好的论题;又不能贪图轻便,降低要求,去写一些随手可得的论题。(3)选题要新意所谓要有新意,就是要从自己已经掌握的理论知识出发,在研究前人研究成果的基础上,善于发现新问题,敢于提出前人没有提出过的,或者虽已提出来,但尚未得到定论或者未完全解决的问题。只要自己的论文观点正确鲜明,材料真实充分,论证深刻有力,也可能填补我国理论界对某些方面研究的空白,或者对以前有关学说的不足进行补充、深化和修正。这样,也就使论文具有新意,具有独创性。

有关晶体的论文

晶体分为以下几种:离子晶体:阴阳离子之间依靠离子键形成的晶体原子晶体:原子之间依靠共价键形成的晶体分子晶体:分子间依靠分子间作用力形成的晶体金属晶体:金属间依靠金属键形成的晶体混合型晶体:晶体内部结构包含有两种或两种以上键型的晶体

高压物理和高压化学主要从事于高压诱导相变和高压诱导化学反应的研究,以及高压下荧光光谱和拉曼光谱的研究。发光材料合成主要从事发光有机小分子与金属形成有机络合物的合成及其光学性质的研究。原子光刻技术原子束刻蚀从事新型自组装单分子层抗蚀剂的开发和利用;亚稳态中性原子曝光源的开发和利用,硅表面硅纳米结构的制造和表征。曾经研究方向:主要是合成有机分子晶体,通过拉曼光谱研究这些分子固体在高压下的晶体结构和分子结构的变化。已经对二苯甲酮(Benzophonone)、安息香(Benzoin)、偶氮苯 (Azobenzene )、苄连氮(Benzalazine)、二苯基乙二酮(Benzil)等晶体的高压下的拉曼光谱和荧光光谱进行了测试,并取得了较好的结果 。主要研究高压下有机分子晶体的相变和光谱学性质。有机分子是有不同的基团组成的,每个基团又是由各种原子组成的,各原子间由化学键连接。具有各种不同的异构体,同分异构体,官能团异构体,构象异构体等。戊烷具有正、异、新三种异构体。环己烷具有船式和椅式两种异构体,而且环上的氢具有两种不同的排列(直立键和倒伏键)。分子的振动和转动产生分子光谱。在拉曼光谱中表现出不同基团的特征频率。而且这些特征频率随着压力的升高,有机分子的结构发生变化,出现新的凝聚相,有些频率消失,或出现新的拉曼频率。有机分子间作用力主要有范德华力和氢键。压力很容易改变其作用力。在特定的压力下,分子间的排列将向最优化排列方向发展,来达到最大堆砌原理,给有机分子晶体带来新的光电磁效应。有机分子的相变可以根据光谱的变化来确定发生了什么的变化。如高压X射线研究高压下分子结构等。国外的高压研究组织先后对甲烷,以及相关的卤代甲烷,萘,蒽,六联噻吩,金刚烷(乌洛托品),碳60,苯,环己烷,环己烯等进行了研究,主要采用的测试手段有差热分析法,傅里叶红外光谱,拉曼光谱,吸收光谱,X射线衍射,中子衍射等技术手段。本实验室主要采用拉曼光谱和荧光光谱来研究有机分子晶体的结构变化和能带变化,计划添加红外光谱仪和拉曼光谱仪结合研究构象变化。并在显微镜下观察有机分子晶体随着压力升高,在不同的偏振片位置的图象采集,为研究提供直观的判断!高压下苯(Benzene)的研究:苯在常温常压下是无色透明的液体,在偏光显微镜下观察呈现杏黄色。在常温下,随着压力的升高,从液相逐渐向固相发生转变,而且还有固相的几次转变,且运用金刚石对顶砧技术加压通过偏光显微镜观察,具有非常漂亮的色彩变化。而且还先后运用X射线衍射研究在不同压力的结构,用拉曼光谱仪和红外光谱仪对分子振动及相变进行研究,发生相变时拉曼峰内部模式变化,或间并态分裂,或拉曼峰消失。还有其它的实验测试手段也曾经对苯进行了研究。最早对苯进行研究的是布里奇曼(Bridgman),在测量苯的压缩率时发现了苯的固相II(Phase II),具有一定的粘滞性。随后开雷恩(Klein)等通过透光的高压窗口观察到了整个相变的过程,并解释为马氏体或互换位置的相变类型。继之乐(Akella)和肯尼迪(Kennedy)运用金刚石对顶砧高压技术通过差热分析法对苯的固相II进行了证明。随着同步辐射的发展,皮埃尔马瑞尼(Piermerini)等通过X射线晶相研究苯的固相II,确定了苯固相II为单斜晶系(monoclinic)(P21/c)C52h的空间群。元胞内有两个分子处于Ci点位置上。其相变的条件为:294K,25Kbar。随后的实验证明了苯固相I (Phase I)Pbcd,D52h的空间群。元胞内有四个分子处于Ci点位置上。其相变的条件为:294K,14K 苯固相III(Phase III)为单斜晶系,P21/c。其相变条件为295K,40Kbar。伴随着固相III'(Phase III') 苯的固相IV其相变条件为:295K,110Kbar。我们在室温下可以连续观察到苯的相变过程。并有苯的室温高压相变过程的录像可供下观看。

晶体分为四类:离子晶体,原子晶体,分子晶体和金属晶体 离子晶体由阴阳离子的离子键组成,硬度较大,沸点高,低挥发。像大部分盐类,碱类,还有氯化钠,氢氧化钠,氧化钠之类。 原子晶体是原子间以共价键形成的,硬度更大,溶沸点高,记住典型的内个就行了:金刚石,晶体硅,二氧化硅,碳化硅, 分子晶体是他子间作用力形成的,低熔点低沸点,像氧气,硫啊,氮气,气态氢化物都是

关于液晶的论文

从历史写到未来发展方向。

自己翻吧,是不是毕设啊,我也是高分子的,才翻了一个9页的,两天才翻完

去问你们当地搞家电维修的师傅

你把你的毕业设计题目给我看看,要是有我这帮你

关于单晶硅的论文

硅,Si,地球上含硅的东西多的很好像90%以上都是今硅的,你说的单晶硅,我想是用来做太阳能电池片的吧,太阳能级别的硅纯度6N以上就可以了,9999%我从开头说起吧,开始是石头,(石头都含硅),把石头加热,变成液态,在加热变成气态,把气体通过一个密封的大箱子,箱子里有N多的子晶加热,两头用石墨夹住的,气体通过这个箱子,子晶会把气体中的一种吸符到子晶上,子晶慢慢就变粗了,因为是气体变固体,所以很慢,一个月左右,箱子里有就很多长长的原生多晶硅,当然,还有很多的废气啊什么的,(四氯化硅)就是生产过程中产生的吧,好像现在还不能很好处理这东西,废话不多说,原生多晶有了,就开始酸洗,氢氟酸啊硝酸啊,乙酸啊什么的把原生多晶外面的东西洗干净了,就过烘房烘干,无尘检查打包,送到拉晶,拉晶就是用拉晶炉把多晶硅加热融化,在用子晶向上拉引,工人先把多晶硅放进石英锅里,(厂里为了减少成本,也会用一些洗好的电池片,碎硅片一起融)关上炉子加热,石英锅的融点是1700度,硅的融点才1410度左右,融化了硅以后石英锅慢慢转起来,子晶从上面下降,点到锅的中心液面点,也慢慢反方向转,锅下面同时在电加热,液面上加冷,子晶点到液面上就会出现一个光点,慢慢旋转,向上拉引,放肩,转肩,正常拉棒,收尾,一天半左右,一个单晶棒就出来了,当然还有很多是经验,我文笔不太好,说不清楚,比如放母合金,控制温度什么的,单晶棒有了就切方,单晶棒一般是做6英寸的,P型,电阻率0。5-6欧姆(一英寸等于2。4厘米左右)切掉棒子四边,做成有倒角的正方形,在切片,0。22毫米一片吧。好像就这么多了~~~~~~

你应该说清楚,你是应用单晶硅,还是制取,硅在电子和电路应用太多了,就冲这方面入手!!

最先制得晶形硅的是最先制出纯铝的法国化学家亨利得维尔。1854年,得维尔用强电池组电解石英砂和冰晶石的熔融物,在阴极上得到一种灰色性脆的粒状金属(硅铝合金)。当这种金属颗粒冷却后,析出了一种有金属光泽的片状晶体。通过实验可知,这种片状晶体的化学性质与硅粉的性质完全相同,因而确信此片状晶体就是晶体硅。 硅是比锗更经得起当今器件工艺发展考验的半导体材料。在1966年已经生产40000千克半导体级硅(单晶超纯硅,杂质含量小于1/109),从而制造出40亿个元件。到1966年,用于这方面的硅已超过锗的用量。 由硅晶体管和其他元件组成的集成电路,集成度越来越高,规模越来越大,而元件则愈做愈小。一个直径为75毫米的硅片,可集成几万至几十万甚至几百万个元件,形成了微电子学,从而出现了微型计算机、微处理机等。 在铝衬底上,生长—层10—25微米厚的多晶硅薄膜,就是一种便宜而轻巧的太阳能电池材料,适于在太空和地面上使用。 硅是同位素电池中换能器的主要材料。换能器是将同位素热源发出的热能转变为电能的装置。硅-锗合金做的换能器,其工作温度可达1000oC,机械性能和抗氧化性能很好,高温下不易蒸发和中毒,无论在真空还是空气中都能工作。 航天飞机用的耐热而极轻的硅瓦,在航天飞机返回大气层时,它可保护机身不受超过1000oC高温的损伤。 天然橡胶和合成橡胶的使用温度,一般都在150oC以下,否则就会老化变质。20世纪40年代发展起来的硅橡胶,是以硅一氧一硅为主链的半无机高分子弹性体,兼有无机材料和有机材料的某些特点,使用温度范围宽广。硅橡胶具有优异的耐臭氧、耐碱、生理惰性(对人机体没有不良影响,可做为某些脏器的修复材料,如人工关节)和电气性能。某些特殊结构的硅橡胶,更具有优良的耐油、耐溶剂、耐辐射等特性,因此硅橡胶已广泛用于航空、宇宙航行技术、电气及电子工业部门。 用110—2甲基乙烯基硅橡胶做生胶原料,乙炔炭黑做填料可制成导电橡胶,是电子表中连接集成电路与液晶屏的理想导电材料。 硅酸在水中能形成凝胶,因此可制得一种吸附剂---硅胶。硅胶是一种极性吸附剂,对H20等极性物质都有较强的吸附能力,工业上常用做干燥剂和吸附剂。 硅酸钠的水溶液叫水玻璃,工业上称做泡花碱。木材及织物浸过水玻璃后,可以防腐,不易着火。 硅溶胶是以Si02为基本单位的水中分散体。在羊毛纺织过程中,它可做为轻纺上浆的胶剂,以减少羊毛纤维的断头率,在涂层中含有硅溶胶,可提高无机纤维材料的表面抗 热强度。 在搪瓷器皿制造业中,加进硅溶胶以后,可降低膨胀系数,以改进对四氟乙烯的粘合性,在玻璃及玻璃陶瓷中亦有同样效果。若在玻璃中掺入25—30%的硅溶胶,可制得优质的硅硼酸玻璃。 某些钠硼硅酸盐玻璃(含氧化钠、氧化硼和氧化硅)经过热处理,原子重新组合,就分为互不熔混的两部分。一部分主要含氧化硅,另一部分主要含氧化钠和氧化硼。如果再用酸处理,那么二氧化硅将不受酸的影响而留下来,而氧化钠和氧化硼则溶于酸中,剩下众多的空洞一—微孔,于是就制成了用途广泛的微孔玻璃。 将微孔玻璃烘干,烧结,就得到高硅氧透明玻璃。它耐高温,热稳定性好,透紫外线能力强,可在多方面代替石英玻璃,适宜做高温观察窗, 比如宇宙飞船上的观察窗。迫过它去观察物体,不会发生变形,因为它的光学均匀性也很好。 如果在普通的钠铝硼硅酸盐玻璃中加入少量卤化银做感光剂,微量铜做增感剂,用玻璃常规工艺熔化,退火再经适当处理,就能制成卤化银光色玻璃。它会因光的强度不同而改变颜色,在强光防护、显示装置、光信息存储、交通工具上的挡风玻璃等方面,都有重要用途。 纯净的二氧化硅晶体叫做石英。石英在1600℃熔化成粘稠液体,内部变为无规则形态,再遇冷时,因为粘度大而不易再结晶,成为石英玻璃。它有很多特殊的性质,如能让可见光和紫外光通过,可用它制造紫外灯和光学仪器;它的膨胀系数小,能经受温度的剧变,而且有很好的抗酸性(除氢氟酸外),因此,常被用来制造高级化学器皿。 医用激光器配置的光能传输系统是用石英光导纤维制成的,它不仅细巧轻便,灵活自如,且可将激光能量传入人体内脏器官进行医治。 一种新型水泥——双快水泥,具有快凝、快硬的特点。它浇注一天后的强度,相当于普通水泥浇注7-28天的强度,可用于滑升模板施工、预应力混凝土构件、砌块的快速成型和脱模,也可用它做矿井巷道喷射混凝土或机械铸件造型自硬砂。 用废轮胎等制成海绵状弹性体,与粘结性强的乳剂和水泥混和搅拌,就成为橡胶水泥。它克服了原有混凝土的缺点,能防止龟裂、剥离和吸水,既可用于铺路,又可用于建筑物上。 SiC叫碳化硅,又叫金刚砂。它具有类似金刚石的结构,硬度极大,而且分解温度又很高,所以在工业上大量用作磨料。 氮化硅陶瓷的强度和硬度很高,抗热震性和耐化学腐蚀性好,摩擦系数小且有自润性,是一种优越的耐磨材料。用氮化硅陶瓷制成的机械密封圈,经过几百到几千小时的运转后,磨损较小,寿命较原用材料提高几倍到十几倍。 以碳化硅陶瓷为基板的碳化硅远红外辐射板,被加热到一定温度后,能辐射出2—15微米以上的长波红外线,它对有机物,高分子物质以及对远红外线有强烈吸收峰的含水物质等,有很高的干燥效率。目前,这种碳化硅远红外辐射板巳用于自行车、缝纫机、家俱;木材,皮革,纺织,食品及粮食作物的干燥。

晶体管论文

一、晶体三极管的命名方法及型号字母意义 晶体三极管的命名方法见图5-18,型号字母意义见表5-6 二、晶体三极管的种类 晶体三极管主要有NPN 型和PNP型两大类,一般我们可以从晶体管上标出的型号来识别。详见表5-6。晶体三极管的种类划分如下。 ①按设计结构分为 : 点接触型、面接触型。 ②按工作频率分为 : 高频管、低频管、开关管。 ③按功率大小分为 : 大功率、中功率、小功率。 ④从封装形式分为 : 金属封装、塑料封装。 三、三极管的主要参数 一般情况晶体管的参数可分为直流参数、交流参数、极限参数三大类。 ①直流参数 : 集电极 -基极反向电流 ICBO。此值越小说明晶体管温度稳定性越好。一般小功率管约10μA左右,硅晶体管更小。 集电极-发射极反向电流ICEO, 也称穿透电流。此值越小说明晶体管稳定性越好。过大说明这个晶体管不宜使用。 ②极限参数:晶体管的极限参数有: 集电极最大允许电流ICM;集电极最大允许耗散功率ICM;集电极-发射极反向击穿电压V(BR)CEO 。 ③晶体管的电流放大系数:晶体管的直流放大系数和交流放大系数近似相等,在实际使用时一般不再区分,都用β表示,也可用hFE表示。 为了能直观地表明三极管的放大倍数 , 常在三极管的外壳上标注不同的色标。锗、硅开关管 , 高、低频小功率管 , 硅低频大功率管所用的色标标志如表 2-9-6 所示。β范围 0~15 15~25 25~40 40~55 55~80 80~120 120~180 180~270 270~400 400~ 色标 棕 红 橙 黄 绿 蓝 紫 灰 白 黑 表5-7 部分三极管β值色标表示 ④特性频率fT:晶体三极管的β值随工作频率的升高而下降,三极管的特性频率f是当β下降到 1 时的频率值。也就是说 , 在这个频率下的三极管,己失去放大能力,因为晶体管的工作频率必须小于晶体管特性频率的一半以下。四、常用晶体三极管的外形识别 ①小功率晶体三极管外形电极识别:对于小功率晶体三极管来说,有金属外壳和塑料外壳封装两种,如图5-25 所示。②大功率晶体三极管外形电极识别:对于大功率晶体三极管,外形一般分为F型,G型两种,如图5-26(a) 所示。F型管从外形上只能看到两个电极。将管脚底面朝上,两个电极管脚置于左侧,上面为e极,下为b极,底座为C极。G型管的三个电极的分布如图5-26(b) 所示。图 5-26 大功率晶体三极管电极识别五、用指针式万用表判断晶体三极管好坏及辨别三极管的e、 b、c电极 三极管的管脚必须正确辨认,否则,接入电路不但不能正常工作,还可能烧坏晶体管。己知三极管类型及电极,指针式万用表判别晶体管好坏的方法如下: ①测 NPN 三极管:将万用表欧姆挡置 "R × 100" 或 "R × lk" 处,把黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。 ②测 PNP 三极管:将万用表欧姆挡置 "R × 100" 或 "R × lk" 处,把红表笔接在基极上,将黑表笔先后接在其余两个极上,如果两次测得的电阻值都较小,再将黑表笔接在基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很大,则说明三极管是好的。 当三极管上标记不清楚时,可以用万用表来初步确定三极管的好坏及类型 (NPN 型还是 PNP 型 ),并辨别出e、b、c三个电极。测试方法如下 : ①用指针式万用表判断基极 b 和三极管的类型:将万用表欧姆挡置 "R × 100" 或"R×lk" 处,先假设三极管的某极为"基极",并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧 ),则假设的基极是正确的,且被测三极管为 NPN 型管;同上,如果两次测得的电阻值都很大( 约为几千欧至几十千欧 ), 则假设的基极是正确的,且被测三极管为 PNP 型管。如果两次测得的电阻值是一大一小,则原来假设的基极是错误的,这时必须重新假设另一电极为"基极",再重复上述测试。 ②判断集电极c和发射极e:仍将指针式万用表欧姆挡置 "R × 100"或"R × 1k" 处,以NPN管为例,把黑表笔接在假设的集电极c上,红表笔接到假设的发射极e上,并用手捏住b和c极 ( 不能使b、c直接接触 ), 通过人体 , 相当 b 、 C 之间接入偏置电阻 , 如图 5-27(a) 所示。读出表头所示的阻值 , 然后将两表笔反接重测。若第一次测得的阻值比第二次小 , 说明原假设成立 , 因为 c 、 e 问电阻值小说明通过万用表的电流大 , 偏置正常。其等效电路如图5-27(b) 所示 , 图中VCC 是表内电阻挡提供的电池 ,R为表 内阻 ,Rm 为人体电阻。图 5-27 用指针万用表判别三极管 c 、 e 电极 用数字万用表测二极管的挡位也能检测三极管的PN结,可以很方便地确定三极管的好坏及类型,但要注意,与指针式万用表不同,数字式万用表红表笔为内部电池的正端。例:当把红表笔接在假设的基极上, 而将黑表笔先后接到其余两个极上, 如果表显示通〈硅管正向压降在 6V 左右 ), 则假设的基极是正确的 , 且被测三极管为 NPN 型管。 数字式万用表一般都有测三极管放大倍数的挡位(hFE), 使用时 , 先确认晶体管类型 , 然后将被测管子 e 、b 、c三脚分别插入数字式万用表面板对应的三极管插孔中,表显示出hFE 的近似值。 以上介绍的方法是比较简单的测试,要想进一步精确测试可以使用晶体管图示仪 ,它能十分清楚地显示出三极管的特性曲线及电流放大倍数等。六、三极管的选用 选用三极管要依据它在电路中所承担的作用查阅晶体管手册,选择参数合适的三极管型号。 a、NPN型和PNP型的晶体管直流偏置电路极性是完全相反的,具体连接时必须注意。 b、电路加在晶体管上的恒定或瞬态反向电压值要小于晶体管的反向击穿电压,否则晶体管很易损坏。 c、高频运用时,所选晶体管的特征频率F,要高于工作频率,以保证晶体管能正常工作。 d、大功率运用时晶体管内耗散的功率必须小于厂家给出的最大耗散功率,否则晶体管容易被热击穿,晶体管的耗散功率值与环境温度及散热大小形状有关,使用时注意手册说明。 七、中、小功率三极管的检测方 ①性能好环的判定,对已知型号和端子排列的三极管,可按下述方法来判断其性能好环。 a、测量极间电阻。测试方法如图5-28所示。将万用表置于R×100或R×1K挡,按照红、黑表笔的6种不同接法时行测试,其中,发射结和集电结的正向电阻值比较低,其他4种接法测得电阻值得都很高。质量良好的中、小功率三极管。正向电阻一般为几百欧至几千欧,其余的极间电阻值都很高,约为几百千欧至无穷大,但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大。图5-28 三极管的正常极间电阻 b、测量穿透电流ICBD三极管的穿透电流ICBD的数值近似等于管子的放大倍数β和集电结的反向饱和电流ICBD乘积,ICBD随着环境温度的升高增长很快,ICBD的增加必然ICBD然的增大,而ICBD的增大将直接影响管子工作的稳定性,所以在使用中尽量选用ICBD+小的管子。 通过用万用表电阻挡测量三极管e-c极之间的电阻的方法,可间接估计ICBD的大小,具体方法如下。 测试电路如5-29所示,其中图(a)为测PNP型管的接法,图(b)为测NPN型管的接法,万用表电阻挡量程一般选用R×100或R×1K挡,要求测得的电阻值越大越好,e-c间的阻值越大,说明管子ICBD越小,反之,所测阻值越小,说明被测管ICBD越大。一般说来,中、小功率硅管、锗材料高频管及锗材料低频管,其阻值应分别在几百千欧,几十千欧及十几千欧以上。如果阻值很小或测试时万用表来回晃动,则表明ICEO很大,管子的性能不稳定。图5-29 测量三极管的Iceo 在测量三极管的ICEO的过程中,还可以同时检查判断一下管子的稳定性优劣。具体办法是:测量时,用手捏住管壳约1min左右,观察万用表指针向右漂移的情况,指针向右漂移摆动速度越快,说明管子的稳定性越差。通常,e-c间电阻比较小的管子,热稳定性相对就较差。在使用的过程中,稳定性不佳的管子应尽量不用,特别是在要求稳定性较高的电路中更不能使用ICEO大的管子。另外,管子的β越大,ICEO也越大,所以在要求稳定性较高的电路中,所使用的管子的β值不要太高。 C.测量放大能力β。测试电路如图5-30所示。其中图(a)为测PNP型管的接法,图(b)为测NPN型管的接法。万用表置于R×1k挡。具体测试步骤是,先将红、黑表笔按图7-46所示电路接相应端子,然后将电阻R接入电路。此时,万用表指针应向右偏转,偏转的角度越大,说明被测管的放大倍数β越大。如果接上电阻R以后指针向右摆幅度不大或者根本就停止在原位不动,则表明管子的放大能力很差或者已经被损坏。电阻R可用70~100kΩ的固定电阻,也可以利用人体电阻,即用手捏住c、b两端子(注意,c、b间不能短接)来代替电阻R。另外也可以用两手操作,用舌头去舔c、b两端子来充当电阻R进行测量。图5-30 测量三极管的β值方法一 上述方法的优点是简单易行,缺点是只能比较管子β的相对大小,而不能测出β的具体数值。 有些型号的中、小功率三极管,生产厂家在其管壳顶部表示出不同色点来表明管子的放大倍数β值,其颜色和β值的对应关系如表5-8所示。但要注意,各厂家用色标并不一定完全相同。色点 棕 红 橙 黄 绿 蓝 紫 灰 白 黑 β 17 17~27 27~40 40~77 77~80 80~120 120~180 180~270 270~400 >400 ②检测判别电极 如果不知道三极管的型号及管子的端子排列,用万用表进行检测判断。 a.判定基极。测试电路如图5-31所示。用万用表R×100和R×1k挡测量三极管三个电极中两个之间的正、反向电阻值。当用第一根表笔接某一电极,而第二根表笔先后接触另外两个电极均测得低电阻值时,则第一根表笔所接的那个电极即为基极b。这时,要注意万用表表笔的极性,如果红表笔接的是基极b,黑表笔分别接在其他两电极时,测得的阻值都较小,则会判定被测三极管为PNP型管;如果黑表笔接的是基极b,红表笔分别接触其他两电极时,测得的阻值都较小,则被测三极管为NPN型管。图5-31 判定三极管基极 b.判定集电极c和发射集e。测试方法如图5-32所示。现以PNP型三极管为例加以说明。将万用表置于R×1k挡。先使被测三极管的基极悬空,万用表的红、黑表笔分别任接其余两端子,此时指针应指在无穷大位置。然后用手指同时捏住基极与右边的端子,如果万用表指针向右偏转较明显,则表明右边一端即为集电极c,左边的端子为发射极e。如果万用表指针基本不摆动,可改用手指同时捏住基极与左边的端子,若指针向右偏转较明显,则证明左边端子为集电极c,右边的端子为发射极e。 图5-32 判定三极管c、e极 如果在以上两次测量过程中万用表指针均不向右摆动和摆动的幅度不明显,则说明万用表给被测三极管提供的测试电压极性接反了,应将红、黑表笔对调位置后按上述步骤重新测试直到将管子的c、e极区分开为止。 用此种方法判定c、e电极的原理如图7-48(b)所示。在这里,基极偏置电阻Rb是用手指来代替的。由于被测管子的集电结上加有反向偏压,发射结加的是正向偏压,所以使其处在放大状态,此时电流放大倍数较高,所产生的集电极电流Ic要使万用表指针明显向右偏转。倘若红、黑表笔接反了,就等于工作电压接反了,管子也就不能正常工作了。放大倍数大大降低了,从十几倍降到几倍,甚至为零,因此,万用表指针摆幅极小甚至根本不动。 ③判别锗管和硅管 测试电路如图5-33所示。E为一节5V干电池,Rp为50~100kΩ的电阻。将万用表置于直流5V挡。电路接通以后,万用表所指示的便是被测管子的发射结正向压降。若是锗管,该电压值为2~3V;若是硅管,该电压值为6~8V。顺便指出,目前绝大多数硅管为NPN型管,锗管为PNP型管。图5-33测三极管b、e电压判别锗管与硅管 ④判别高频管与低频管 高频管的截止频率大于3MHz,而低频管的截止频率则小于3MHz,一般情况下,二者是不能互换使用的。由于高、低频管的型号不同,所以当它们的标志清楚时,可以查有关手册,较容易地直接加以区分。当它们的标志型号不清时,可利用其BVebo的不同用万用表测量发射结的反向电阻,将高、低频管区分开。 以NPN型管为例,将万用表置于R×1k挡,黑表笔接管子的发射结e,红表笔接管子的基极b。此时电阻值一般均在几百千欧以上。接着将万用表拔至R×10k高阻挡,红、黑表笔接法不变,重新测量一次e、b间的电阻值。若所测量阻值与第一次测得的阻值变化不大,可基本判定被测管为低频管;若阻值变化很大,超过万用表满度1/3,可基本判定被测管为高频管。

过去几十年间,我们身边的电子产品随着科技的发展发生着巨变:从笨重的大哥大到智能手机,从老式台式机到轻薄的笔记本,总的来说,电子产品的外观愈发轻薄,功能愈发强劲。其中最功不可没的,就是构成电子产品的基础元件:晶体管。晶体管尺度的缩小,集成度的提升,是现代电子器件科技水平的标尺。2016年最为新兴的晶体管技术可以实现1纳米(nm)的尺度,突破了之前预测的物理极限5nm。纳米是什么概念呢?一根头发丝的直径在3微米左右,一微米等于1000纳米,1纳米比一根头发丝还要细几千倍。什么是晶体管?或许你没有想象过,你的手机中一片不及指甲盖大小的芯片上竟然集成了数以千万计的晶体管,这些晶体管像是队列整齐、快速前进的士兵,用0和1的逻辑来实现了计算机最重要的存储和控制的功能。1947年,贝尔实验室诞生了世界上首个晶体管,是用锗(Ge)材料制成的。晶体管是一种有逻辑功能的最基础的电子器件,它的基本结构如下图,主要包括栅极(Gate)、源极(Source)以及漏极(Drain)。电流从源极流入漏极,而栅极像一道水闸一样控制着电流的导通和断开,从而实现了0和1的逻辑。电流的流动也像水流一样需要一个河道,在栅极和源极之间电流导通的通道叫做沟道,沟道宽度跟晶体管栅极最小宽度基本一致。所以晶体管栅极的最小宽度是影响晶体管尺度的关键因素,被用来作为工艺尺寸的标准。现今芯片的制造工艺常常用40nm、28nm、22nm、14nm、10nm、7nm来表示,比如Intel、三星、IBM、台积电等公司,都在为能够领跑行业先进技术持续进行着技术创新。近年Intel一直以其领先的14nm工艺技术成为行业领头羊,而今年10月,三星宣布量产10nm芯片,台积电紧随其后。另一方面,随着IBM公布了7nm的工艺测试芯片,更精微的芯片工艺竞争战役的号角被吹响。需要一提的是,这个制造工艺的数字,例如14nm指的不是晶体管的大小只有14nm,而是晶体管栅极的最小宽度。要实现这么高的集成度,企业一般采取的策略是通过光刻的手段,在一层层材料上像是雕刻家一样去掉多余的部分,刻蚀出我们需要的精细结构。摩尔定律失效!过去五十年间,晶体管尺度的缩小速度基本遵循着摩尔定律。摩尔定律是指当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。直到2016年年初,全球半导体行业才正式宣布摩尔定律失效。晶体管工艺尺度每缩小一次,都会让芯片的性能、功耗发生剧变,继而给我们使用的计算机、手机等电子产品的性能带来显而易见的进步。1nm晶体管的技术:二硫化钼与石墨烯为了提升速度和每片芯片上的元件数量,沟道长度在不断缩短,而短沟道效应随之产生。短沟道效应可能使得栅极这道闸门关不断电流,电流的泄露会使得晶体管的性能变坏。研究发现,当现在主流的硅(Si)晶体管的栅极宽度缩小到低于5nm,会出现严重的短沟道效应,所以5nm(有些地方说是7nm)被称为栅极宽度物理极限。为了突破这种极限,科研工作者们积极寻求着硅的替代品,其中,一些层状半导体因具有均匀的单原子层厚度、较低的介电常数、更大的带隙以及更重的有效载流子质量等特性得到了积极的研究,其中二硫化钼(MoS2)和石墨烯都是代表。      2016年10月,加州大学伯克利分校和斯坦福大学的学者在著名的《Science》杂志上合作发表了一篇备受关注的论文,文中展示了一种物理长度1nm的二硫化钼(MoS2)晶体管。这种晶体管用单壁碳纳米管作为栅极电极,被放置在氧化硅和氧化锆的分界面上,而MoS2作为源极和漏极之间的沟道。仿真结果显示,其有效沟道长度在关状态时约9nm,开状态约1nm,所以被称为1nm晶体管。其中,单壁碳纳米管(SWCNT)是什么呢?我们知道,石墨烯是单层的碳原子排列而成的,把单原子层的石墨烯卷起来,就是碳纳米管了。而碳纳米管剪开也就成了一片薄薄的石墨烯。1nm晶体管虽然已经实现了,但是其工业价值还有待时间的检验。在摩尔定律失效的现在,科学家追求的方向也在发生着改变。他们不再将更小更快的晶体管作为主要目标,而是从全新的角度去改变我们日常使用的电子产品,从策略上看,例如从软件层级的需要来改变硬件,从新兴技术上看,例如现在方兴未艾的量子计算机。过去我们已经见证了电子产品的进步和飞速发展,未来我们的电脑、手机也可能会具备更为超乎想象的卓越性能。参考文献[1] Desai S B, Madhvapathy S R, Sachid A B, MoS2 transistors with 1-nanometer gate lengths[J] Science, 2016,354(6308): 99-出品:科普中国制作:科创小新监制:中国科学院计算机网络信息中心“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。本文由科普中国融合创作出品,转载请注明出处。

写字的铅笔是物理实验中最简易、最方便的器材,下面列举数例并略加分析。 1.探究声音的传播 将铅笔一端放在口中,轻轻敲笔杆几下,再用牙齿咬住笔杆轻敲笔杆几下。发现后者的声音比前者大得多。因为前者声音是经过空气传到耳膜的,后者声音是经过牙齿、骨骼传到耳膜的。 2.长度的特殊的测量 铅笔除作为被测物体用来做刻度尺测长度的实验外,还可用来进行一些特殊测量:如用纸带缠住圆形铅笔,在重叠处打孔,展开后测两孔间距可知铅笔横截面圆周长;把细铜丝单层密绕在铅笔上,测出线圈总长度,除以匝数,可得铜丝直径。 3.演示减小摩擦方法 首先用弹簧测力计匀速拉动放在水平桌面上的木块,然后在木块下面放几支圆形铅笔,再用测力计匀速拉动,比较两次摩擦力,发现后者比前者小得多,因为前者是滑动摩擦,后者是滚动摩擦。 4.演示压强的大小 用小刀把长度适中的铅笔芯削尖,另一端仍为平面,把它放在左右两手食指间用力按,比较感觉,可用来验证在压力一定的情况下,压强与受力面积成反比。 5.演示物体的沉浮条件 把铅笔的下端绕上几圈铁丝,按入水中,使其竖直地浸没在盛水的烧杯中,放手后,铅笔上浮,最后竖直地浮在水中;若取出再增加铁丝匝数后,可使其下沉,以此来验证物体的沉浮条件。 6.演示导体和绝缘体 把电池、小灯泡、开关、导线组成的一个简单电路,将铅笔木质部分或铅笔芯串联在电路中,看灯泡是否发光,从而可演示导体与绝缘体的区别。

相关百科

热门百科

首页
发表服务