首页

> 论文期刊知识库

首页 论文期刊知识库 问题

关于遗传病的文献资料

发布时间:

关于遗传病的文献资料

多基因遗传病:由多对基因控制的人类遗传病。在群体中的发病率却比较高,如原发性高血压约为6%,冠心病约为5%。所以总的估计,人群中约15%~25%的人受累。如:唇裂、无脑儿、原发性高血压、青少年型糖尿病、冠心病、哮喘、精神分裂症、先天性心脏病等。 ①这类病有家族聚集现象,但患者同胞中的发病率远低于1/2~1/4,且患者的双亲和子代的发病率与同胞相同。因此,不符合常染色体显、隐性遗传。 ②遗传度在60%以上的多基因病中,病人的第一级亲属(指有1/2的基因相同的亲属,如双亲与子女以及兄弟姐妹之间,即为一级亲属)的发病率接近于群体发病率的平方根。例如唇裂,人群发病率为7/1000,其遗传度76%,患者一级亲属发病率4%,近于0017的平方根。 ③随着亲属级别的降低,患者亲属发病风险率明显下降。又如唇裂在一级亲属中发病率为4%,二级亲属(叔、伯、舅、姨)中约7%,三级亲属(堂兄弟姐妹、姑、姨表兄弟姐妹等)仅为3%。 ④亲属发病率与家族中已有的患者人数和患者病变的程度有关,家族病例数越多,病变越严重,亲属发病率就越高。 ⑤近亲结婚所生子女的发病率比非近亲结婚所生子女的发病率高50~100%。 ⑥有些多基因病有性别的差异和种族的差异。如先天性幽门狭窄,男子为女子的5倍;先天性髋脱臼,日本人发病率是美国人的10倍。

参考文献:  [1]游雪晴人类基因组进程及重大意义科技日报,  [2]李夏浅谈人类基因组计划的进程及重要意义民营科技,2011年第5期 [3] Collins F S, McKusick V A Implications of the Human Genome Project for medical science[J] Jama, 2001, 285(5) 540-  [4]高媛,郑文岭,马文丽基因诊断技术的临床应用进展基础医学与临床,2013 年 1月,第33卷第1期  [5]李晓华生物化学[Z]2008:226-   [6]王国建 耳聋基因诊断的临床实践中国人民解放军总医院军事进修学院,  [7]刘峰 基因芯片技术筛选和鉴定结直肠癌腹膜种植转移相关基因南方医科大学,  [8]梁迎春, 程龙, 叶棋浓 肿瘤基因治疗的研究进展[J] 生物技术通讯, 2012,23(3):436-  [9] 于剑 原发性肝癌的基因治疗[D] 山东大学,   [10]Yu M, Poeschla E, Wong-Staal F Progress towards gene therapy for HIV infection[J] Gene therapy, 1994, 1(1) 13-

关于遗传学的文献资料

表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic imprinting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等。表观遗传的研究进展:  1 DNA甲基化   DNA甲基化是指在DNA序列的胞嘧啶核苷酸的特定位置共价加减甲基基团的一种变化。甲基化反应进行的程度受到DNA甲基转移酶(DNA methyltransferases,DNMTs)的控制。在脊椎动物中,甲基基团的共价加减反应只会发生于启动子区域的胞嘧啶与鸟苷酸含量丰富的区域,即所谓的CpG岛(CpG islands)[5]。   1 低甲基化   在机体正常的生理条件下,位于启动子区域外的大约80%的CpG二核苷酸结构处于甲基化状态。全基因组的甲基化程度降低或者处于低甲基化状态会导致信使RNA水平受到抑制。结肠癌患者的DNA总体水平处于低甲基化状态,是首次阐述的表观遗传调控的异常情况[6]。低甲基化状态通过促进有丝分裂导致染色体重组,引起基因组不稳定现象如基因缺失,易位等发生肿瘤。DNA低甲基化状态还与原癌基因如c-Jun、c-Myc及c-Ha-Ras的激活作用有关[7]。目前的研究证实,肿瘤组织的DNA大部分都处于低甲基化状态,低甲基化加速癌变进程[8-9]。   2 高甲基化   通常,高度甲基化发生于特定的某一基因。基因组启动子区域CpG岛的高度甲基化状态基因的转录沉默,随后导致蛋白表达的缺失。肿瘤抑癌基因的高甲基化被认为是基因沉默致等位基因缺失或突变的一种途径[10]。细胞周期、DNA修复、血管生成、致癌物质的代谢、细胞凋亡以及细胞间相互作用等生物事件都涉及基因的高甲基化。另一方面,基因的高甲基化同样会发生于正常的生理进程,例如,女性的第二X染色体巴氏小体(Barr body)失活期间存在基因的高甲基化。此外,基因的高甲基化还是一种与衰老以及抑制甲基化诱导的重复DNA序列转录以保持基因组稳定性的生理过程。   3 DNA甲基化的检测方法   组织标本DNA或外周血及机体其他分泌体液如胆汁等的甲基化程度的检测有几种不同的实验方法。这些方法充分利用DNA的稳定性检测甲基化的程度。在DNA甲基化测序方法发明之前,人们常常利用甲基化敏感的同裂酶检测DNA甲基化程度。这种方法的一个主要缺点是,少于5%的甲基化胞嘧啶被错估在给定的DNA序列中。20世纪90年代早期开始,一种高灵敏度检测甲基化程度的方法即对DNA亚硫酸盐修饰方法逐渐被人们所接受。经过亚硫酸盐修饰后,未甲基化的胞嘧啶转变为尿嘧啶,而发生甲基化的则不发生转变。随后,采用与甲基化DNA序列相匹配的特异性引物和探针,定性或定量的甲基化特异PCR方法(methylation-specific PCR,MSP)检测甲基化程度被广泛使用[11]。MSP法的优点在于积极显示甲基化的胞嘧啶,以及描绘出给定DNA序列的基因整体甲基化状态。结合了实时定量的MSP方法则能够给出测定样品甲基化等位基因的百分比。   DNA测序方法也常被应用于亚硫酸盐修饰处理的DNA检测中,目的是确定高度甲基化或低度甲基化的特定区域。这是一种检测不同程度甲基化特定区域特别有用的,且有助于特异性更高的MSP检测时引物及探设计的方法。现在人们熟知的焦磷酸测序是一种基于聚合原理的DNA测序(确定DNA中核苷酸的顺序)方法。它依赖于核苷酸掺入中焦磷酸盐的释放,而非双脱氧核苷三磷酸参与的链终止反应[12]。   PCR技术的一个缺陷是只针对目标候选基因进行实验。近来,高通量技术、全基因组及芯片平台技术应用于肿瘤组中特定的甲基化类型的检测。甲基化DNA免疫沉淀法(methylated DNA immunoprecipitation,MeDIP)是一种富集甲基化DNA的方法。它依据的原理为基因组DNA可以被超声波裂解而随意地进行修剪,同时被特异性5-甲基胞苷的抗体免疫沉淀。这种技术可以用来测定整体基因组甲基化程度以及鉴别异常甲基化的基因[13]。甲基化CpG岛扩增(methylated CpG island amplification,MCA)是基于在甲基化敏感性限制性酶如仅在未甲基化位点进行剪切,在胞嘧啶于鸟苷酸间留下平端SmaⅠ酶对基因组DNA的消化作用的一种方法[14]。   2 染色质修饰   染色质是由组蛋白与DNA组成的。组蛋白是染色质的蛋白组分,DNA分子与其紧密结合,构成核小体。组蛋白翻译后有多种修饰的方式,包括甲基化、乙酰化、磷酸化以及泛素化等。这些修饰反应会影响组蛋白与DNA分子的相互作用,从而导致基因转录、DNA修复与复制、染色体的重排生理过程发生改变。   目前,对于赖氨酸残基乙酰化修饰是研究的比较透彻的组蛋白修饰反应。总体上,组蛋白乙酰化与转录激活相关联,而去乙酰化则与转录抑制有关。乙酰化作用可中和位于组蛋白尾部的赖氨酸残基电荷,减少组蛋白尾部与DNA结合键的长度。这种现象表明核小体更加容易接近转录因子而发挥生物学作用。组蛋白的甲基化作用对转录过程起到积极地或消极地影响。伴随着DNA的甲基化作用与组蛋白不同类型的修饰同时发生,染色质的修饰效果将会发生明显改变。这一领域是目前研究的热点[15-16]。对于染色质修饰的检测手段目前有质谱分析方法与DNA测序技术。质谱分析方法可以很方便且准确地对染色质的修饰程度进行检测。但是,这些技术仅局限于实验室使用,而且对仪器设备的要求较高。为了阐述组蛋白修饰的真正生物学意义,DNA序列的详细信息也是必需的。最佳的检测技术为染色质免疫沉淀反应(chromatin immunoprecipitation,ChIP)联合特异地与组蛋白修饰变化反应的抗体DNA测序技术[17-18]。   3 印记基因丢失   基因组印迹是一种在基因组DNA水平上对双亲等位基因特异性的修饰作用,这种作用发生在胚胎发育早期,具有不包括DNA序列变化,但影响基因调控以及引起两个等位基因不同表达的特性。它是一个基因的特定亲本等位基因或其所在染色体在配子或受精卵中发生的基因外遗传学修饰[19],与该等位基因的表达或不表达密切相关。绝大多数印记基因成簇地分布在很大的染色体区域,在发育过程中起着十分重要的作用。印记基因具有单等位基因表达的特点,即仅从亲代中的一方获取拷贝体。常染色体基因中大约1%的基因为印记基因。由于基因表达仅仅取决于亲代中的一方,所以子代基因的表达在很大程度生依赖于亲代生活的环境条件。研究表明,一些疾病如自闭症、精神分裂症、Angelman综合征、隐睾-侏儒-肥胖-低智能综合征(Prader-Willi syndrome)以及Beckwith-Wiedemann综合征与印记基因丢失关系密切[20]。   4 非编码RNA   在非编码RNA的研究中,microRNA的研究最为清楚。microRNA长度大约为22个核苷酸片段,受长片段的非编码RNA或基因内含子所编码。microRNA在核内转录,再经历一系列变化最终成为成熟体发挥生物学功能[21-22]。microRNA可能通过两种方式抑制mRNA翻译成为蛋白质。若microRNA是mRNA的直接补充序列,那么microRNA则与mRNA结合同时通过RISC复合体将其降解。若microRNA的序列不能与mRNA进行很好的匹配,则microRNA部分结合于mRNA的3′末端,从而抑制转运RNA的活性,导致翻译不能进行[23]。常见的短链RNA为小干涉RNA(shot interfering RNA, siRNA)和微小RNA(MicroRNA, miRNA)。RNA无论以反义转录本存在的、非编码的RNAs,或RNAi均能导致异染色质形成,并且在有丝分裂中可以遗传的转录沉默。microRNA完全有能力如通过调节组蛋白去乙酰化酶分子从而控制核染色质结构的表观遗传途径方式,调控靶基因表达。   此外,microRNAs与肿瘤的表观遗传学进程密切相关,其可能通过协同肿瘤细胞内相关经典的致癌基因或者下调肿瘤抑制基因的表达,来影响肿瘤的进程。肿瘤细胞系中microRNAs表达水平的变化可能直接影响肿瘤细胞的某些基本行为方式,如肿瘤细胞的增殖与凋亡[24]。microRNAs除了在肿瘤抑制及肿瘤诱发中发挥作用,其还被认为是肿瘤相关药物抗性主要基因的调节因子。目前认为microRNAs作为肿瘤相关药物抗性主要基因的调节因子存在两种机制:一种是遗传学机制,另一种为表观遗传学机制。虽然关于化疗后基因改变的证据是有限的,但是已有大量研究揭示耐药肿瘤细胞在化疗后发生显著地表观遗传学改变[25-27]。同时,还表现在microRNAs表达的变化方面[28]。如Lujambio等[29]研究指出,miR-148的高度甲基化状态导致其自身的表达向下调节,可能的机制为miR-148可以加强乳腺癌细胞中DNMTs的超表达的正反馈。若给予乳腺癌患者DNA脱甲基化药物制剂治疗,则会减弱乳腺癌肿瘤的生长及抑制肿瘤转移。   5 环境对表观遗传影响   越来越多的研究表明,环境因素如二手烟、酗酒、病毒性肝炎、工业污染以及碳排放等在疾病发生的早期阶段扮演一个重要的角色。表观遗传能够对这一现象做出合理解释[30]。据文献资料记载,二战期间(1945~1945年),占领区的荷兰被德军实行严格的食物供给限制政策,每日的食物仅仅为2个土豆、2片面包及1片甜菜根。60年后,与他们同性别的兄弟姐妹相比较,饥荒时期怀孕母亲遗传给后代的基因依然包括印记基因IGFR2。据推测造成这一变化的原因可能为饥荒时期怀孕母亲的叶酸摄入不足导致。另外一份针对单卵双胞胎生命的不同时期进行基因甲基化与组蛋白修饰研究表明,年轻时期双胞胎的表观遗传机制几乎一致。但是,到了50岁时,两者表现为显著的差异,提示环境因素可以改变表观基因组的表达[31]。   6 表观遗传在医疗实践中的应用   表观遗传调节基因表达的事件已经作为解释发育生物学以及人类疾病病因的研究机制。例如,癌组织的高度甲基化使得许多细胞通路的多基因被沉默[32]。通过研究这些基因,可以了解癌症的产生及发展。目前,相关研究的大部分主要集中于单个基因,而没有深入进行相关基因沉默的功能研究。随着人类全基因组基因芯片平台技术的发展,DNA甲基化将被更深入的阐明其生物学功能。从表观遗传连同其他遗传信息共同获得的分子信息来看,可以对肿瘤及疾病形成一种全新的分类体系。这个理论上的分类系统目的是用来阐述患者总体的预后情况、术后病情复发风险、化疗的反应等信息的肿瘤生物学内容。   随着人们对疾病发病原因相关知识的积累,有希望掀起高效治疗疾病的新药物制剂的新时代。对DNA的表观遗传修改具有潜在的可预防或者可逆转的作用。例如,通过抑制DNA甲基化转移酶(DNMTs)的作用就可以阻断DNA甲基化发生,结果导致子代细胞启动子区域CpG岛的脱甲基化,随后引起肿瘤抑制基因的持续表达以及肿瘤生长因子的表达受到抑制。目前,一些DNA脱甲基化化合物如5-氮杂胞苷(5-azacytidine)、5-氮杂-2′-脱氧胞苷、普鲁卡因胺,已经被人们深入研究。但是,毒副作用限制这些药物的广泛使用,使其仅仅被用于骨髓增生异常综合征的患者治疗中。有研究预测,脱甲基制剂可能被用来加强传统化疗方式的效力[33]。此外,还有相当一部分组蛋白乙酰化抑制剂(HDAC),如曲古抑菌素、丙戊酸、丁酸钠等被用来治疗癌症。这些药物通过阻塞多重HDACs的作用导致组蛋白乙酰化的增加。   总之,表观遗传学是遗传与环境相互作用的重要纽带。对表观遗传中各种因子突变导致疾病的研究的复杂程度令人难以置信,表观遗传学对基因信息是如何转录、翻译成蛋白质和表型的调节具有深远的影响,将为人类疾病的治疗指引方向,为设计新方案、研制新药提供科学依据。

%BB%F9%D2%F2%BA%CD%D2%C5%B4%AB%D1%A7%B5%C4%CE%C4%CF%D7&bar=7居然真的有~!

遗传算法最早由美国密执安大学的Holland教授提出,起源于60年代对自然和人工自适应系统的研究。70年代De Jong基于遗传算法的思想在计算机上进行了大量的纯数值函数优化计算实验……-- 《遗传算法原理及应用》周明 孙树栋 去图书馆随便借一本书都有历史,肯定能找到,附录还会有不少参考文献。

关于传染病的文献资料

相似文献: - 防制猪流感的公共卫生学意义 作者:查红波, 刘尚高, 会议 第六次人畜共患病学术交流会人畜共患传染病防治研究新成果汇编 2004年 - 猪流感的流行及其公共卫生学意义 作者:李敏,广东省农科院兽医研究所, 向华, 严悌昆,广东省农科院兽医研究所, 会议 2006中国科协年会2006中国科协年会 2006年 - 猪流感病毒种间传播机制分析与探讨 作者:乔淑丽,贾震虎, 期刊 畜禽业LIVESTOCK AND POULTRY INDUSTRY 2006年 第21期 - 中国猪源HSN1和H9N2亚型流感病毒的分离鉴定 Isolation and characterization of H5N1 and H9N2 influenza viruses from pigs in China 作者:李海燕,于康震,杨焕良,辛晓光,陈君彦,赵朴,毕英佐,陈化兰, 期刊-核心期刊 中国预防兽医学报CHINESE JOURNAL OF PREVENTIVE VETERINARY MEDICINE 2004年 第01期 - 猪流感疫苗的研究进展和应用前景 作者:廖明,叶贺佳,张文炎, 期刊-核心期刊 猪业科学SWINE INDUSTRY SCIENCE 2007年 第10期 - 山东地区猪流感的流行病学调查与分析 作者:陈红军,王怀中,白华,吴时友, 期刊-核心期刊 畜牧与兽医ANIMAL HUSBANDRY & VETERINARY MEDICINE 2008年 第10期 - 禽流感及其公共卫生意义 作者:赵田夫,鄢明华, 期刊-核心期刊 动物科学与动物医学ANIMAL SCIENCE & VETERINARY MEDICINE 2004年 第12期 - 猪流感研究进展 Progress of Swine influenza 作者:朱事康,程珏益,刘中勇,李炳清,罗卓军, 期刊-核心期刊 动物医学进展PROGRESS IN VETERINARY MEDICINE 2005年 第02期 - 猪流行性感冒研究进展及现状 作者:张雷,姜建宏,李林, 期刊 养猪SWINE PRODUCTION 2004年 第06期 - 猪流感病毒在世界范围内的流行情况及公共卫生意义 The Epidemiology of Swine Influenza Virus in the World and Its Public Health Implication 作者:陈义祥,蒙雪琼, 期刊-核心期刊 微生物学通报MICROBIOLOGY 2008年 第04期 - 猪流感病毒的分离及初步鉴定 作者:尹燕博, 陈红军, 田振宇, 吴时友, 会议 中国畜牧兽医学会动物传染病学分会第十二次学术研讨会中国畜牧兽医学会动物传染病学分会第十二次学术研讨会 2007年 - 禽流感与公共卫生 作者:杨小燕, 会议 中国畜牧兽医学会家畜传染病学分会第六届全国会员代表大会暨第11次学术研讨会第六届全国会员代表大会暨第11次学术研讨会论文集 2005年 - 猪流感——一个不容忽视的人兽共患病 作者:赵朴, 郑玉姝, 李海燕, 刘兴友, 会议 中国畜牧兽医学会动物传染病学分会第十二次学术研讨会中国畜牧兽医学会动物传染病学分会第十二次学术研讨会 2007年 - 猪流感诊断方法研究进展 Progress on the Diagnostic Method of Swine Influenza 作者:王方昆,王一成,袁秀芳,徐丽华, 期刊-核心期刊 动物医学进展PROGRESS IN VETERINARY MEDICINE 2006年 第04期 - 禽流感的公共卫生意义 The Significance of Avian Influenza on Public Health 作者:马鸣潇,于洋,韩春华, 期刊 锦州医学院学报(社会科学版)

猪蓝耳病目录[隐藏]  一、病 原  二、流行病学  三、发病机理  四、临诊症状  五、病理变化  六、鉴别诊断  七、防治  八、药物防治  本病以妊娠母猪的繁殖障碍(流产、死胎、木乃伊胎)及各种年龄猪特别是仔猪的呼吸道疾病为特征,现已经成为规模化猪场的主要疫病之一。  本病曾称为“神秘猪病”、“新猪病”、“猪流行性流产和呼吸综合症”、“猪生殖与呼吸综合症”、“蓝耳病”、“猪瘟疫”等,我国将其列为二类传染病。  [编辑本段]一、病 原  猪繁殖和呼吸障碍综合征病毒为单股正链RNA病毒,属套式病毒目,动脉炎病毒科,动脉炎病毒属。不凝集哺乳动物或禽类红细胞,有严格的宿主专一性,对巨噬细胞有专嗜性。病毒的增殖具有抗体依赖性增强作用,好在中和抗体水平存在的情况下,在细胞上的复制能力反而得到增强。  [编辑本段]二、流行病学  本病是一种高度接触性传染病,呈地方流行性。PRRSV只感染猪,各种品种、不同年龄和用途的猪均可感染,但以妊娠母猪和1月龄以内的仔猪最易感。患病猪和带毒猪是本病的重要传染源。主要传播途径是接触感染、空气传播和精液传播,也可通过胎盘垂直传播。易感猪可经口、鼻腔、肌肉、腹腔、静脉及子宫内接种等多种途径而感染病毒,猪感染病毒后2~14周均可通过接触将病毒传播给其他易感猪。从病猪的鼻腔、粪便及尿中均可检测到病毒。易感猪与带毒猪直接接触或与污染有PRRSV的运输工具、器械接触均可受到感染。感染猪的流动也是本病的重要传播方式。  持续性感染是PRRS流行病学的重要特征,PRRSV可在感染猪体内存在很长时间。  [编辑本段]三、发病机理  PRRSV可通过血液循环穿过胎盘使胎猪受到感染,从而引起妊娠后期母猪流产等繁殖障碍。  [编辑本段]四、临诊症状  本病的潜伏期差异较大,引入感染后易感猪群发生PRRS的潜伏期,最短为3天,最长为37天。本病的临诊症状变化很大,且受病毒株、免疫状态及饲养管理因素和环境条件的影响。低毒株可引起猪群无临诊症状的流行,而强毒株能够引起严重的临诊疾病,临诊上可分为急性型、慢性型、亚临诊型等。  1、急性型:发病母猪主要表现为精神沉郁、食欲减少或废绝、发热,出现不同程度的呼吸困难,妊娠后期(105~107天),母猪发生流产、早产、死胎、木乃伊胎、弱仔。母猪流产率可达50%~70%,死产率可达35%以上,木乃伊可达25%,部分新生仔猪表现呼吸困难,运动失调及轻瘫等症状,产后1周内死亡率明显增高(40%~80%)。少数母猪表现为产后无乳、胎衣停滞及阴道分泌物增多。  1月龄仔猪表现出典型的呼吸道症状,呼吸困难,有时呈腹式呼吸,食欲减退或废绝,体温升高到40℃以上,腹泻。被毛粗乱,共济失调,渐进性消瘦,眼睑水肿。少部分仔猪可见耳部、体表皮肤发紫,断奶前仔猪死亡率可达80%~100%,断奶后仔猪的增重降低,日增重可下降50%~75%,死亡率升高(10%~25%)。耐过猪生长缓慢,易继发其他疾病。  生长猪和育肥猪表现出轻度的临诊症状,有不同程序的呼吸系统症状,少数病例可表现出咳嗽及双耳背面、边缘、腹部及尾部皮肤出现深紫色。感染猪易发生继发感染,并出现相应症状。  种公猪的发病率较低,主要表现为一般性的临诊症状,但公猪的精液品质下降,精子出现畸形,精液可带毒。  2、慢性型:这是目前在规模化猪场PRRS表现的主要形式。主要表现为猪群的生产性能下降,生长缓慢,母猪群的繁殖性能下降,猪群免疫功能下降,易继发感染其他细菌性和病毒性疾病。猪群的呼吸道疾病(如支原体感染、传染性胸膜肺炎、链球菌病、附红细胞体病)发病率上升。  3、亚临诊型:感染猪不发病,表现为PRRSV的持续性感染,猪群的血清学抗体阳性,阳性率一般在10%~88%。  [编辑本段]五、病理变化  1、大体病变:无继发感染的病例除有淋巴结轻度或中度水肿外,肉眼变化不明显,呼吸道的病理变化为温和到严重的间质型肺炎,有时有卡他性肺炎,若有继发感染,则可出现相应的病理变化,如心包炎、胸膜炎、腹膜炎及脑膜炎等。  2、病理组织学:PRRSV感染引起的繁殖障碍所产仔猪和胎儿很少有特征性病变,PRRS致死的胎儿病变是子宫内无菌性自溶的结果,没出现特异性;流产的胎儿血管周围出现以巨噬细胞和淋巴细胞浸润为特征的动脉炎、心肌炎和脑炎。脐带发生出血性扩张和坏死性动脉炎。  生长猪较成年猪更常见特征性组织性病理变化,肺的组织学病变具有普遍性,有诊断意义。单纯的PRRS感染引起的肺炎以间质性肺炎伴随正常的呼吸道上皮为特征。其特点为肺泡间隔增厚,单核细胞浸润及Ⅱ型上皮细胞增生,肺泡腔内有坏死细胞碎片。  PRRS和细菌、病毒混合感染时,病变应和并发感染的细菌/病毒的不同而有所变化,合并感染细菌性病原常引起复杂的PRRS肺炎,间质性肺炎常混合化脓性纤维素性支气管肺炎或被化脓性纤维素性支气管肺炎所掩盖。有些感染病例还可见胸膜炎。  鼻甲部黏膜的病变是PRRS感染后期的特征,其上皮细胞纤毛脱落,上皮内空泡形成和黏膜下层淋巴细胞、巨噬细胞和浆细胞浸润。淋巴结、胸腺和脾脏的组织病理学变化,以发生肥大和增生、中心坏死、淋巴窦内有多核巨细胞浸润为特征,病早期可见脾脏白髓、扁桃体滤泡淋巴细胞坏死,后期脾核淋巴结细胞增生;另外PRRS感染引起的血管、神经系统、生殖系统的病变也主要表现为淋巴、巨噬细胞、浆细胞的增生和浸润。  [编辑本段]六、鉴别诊断  本病应与其它繁殖障碍和呼吸道疾病进行鉴别诊断,如应与伪狂犬病、猪圆环病毒病、猪细小病毒病、猪瘟、猪流行性乙型脑炎、猪呼吸道冠状病毒病、猪脑心肌炎、猪血凝性脊髓炎以及其他细菌性疾病进行区分。  [编辑本段]七、防治  1、坚持自繁自养的原则,建立稳定的种猪群,不轻易引种。如必须引种,首先要搞清所引猪场的疫情,此外,还应进行血清学检测,阴性猪方引入,坚决禁止引入阳性带毒猪。引入后必须建立适当的隔离区,做好监测工作,一般需隔离检疫4~5周,健康者方可混群饲养。  2、规模化猪场要彻底实现全进全出,至少要做到产房和保育两个阶段的全进全出。  3、建立健全规模化猪场的生物安全体系,定期对猪舍和环境进行消毒,保持猪舍、饲养管理用具及环境的清洁卫生,一方面可防止外面疫病的传人,另一方面通过严格的卫生消毒措施把猪场内的病原微生物的污染降低到最低限,可以最大限度地控制和降低PRRSV感染猪群的发生率和继发感染机会。  4、做好猪群饲养管理。在猪繁殖与呼吸综合征病毒感染猪场,应做好各阶段猪群的饲养管理,用好料,保证猪群的营养水平,以提高猪群对其他病原微生物的抵抗力,从而降低继发感染的发生率和由此造成的损失。  5、做好其他疫病的免疫接种,控制好其他疫病,特别是猪瘟、猪伪狂犬和猪气喘病的控制。在猪繁殖一呼吸综合征病毒感染猪场,应尽最大努力把猪瘟控制好,否则会造成猪群的高死亡率;同时应竭力推行猪气喘病疫苗的免疫接种,以减轻猪肺炎支原体对肺脏的侵害,从而提高猪群肺脏对呼吸道病原体感染的抵抗力。  6、定期对猪群中猪繁殖与呼吸综合征病毒的感染状况进行监测,以了解该病在猪场的活动状况。一般而言,每季度监测一次,对各个阶段的猪群进行采样进行抗体监测,如果4次监测抗体阳性率没有显著变化,则表明该病在猪场是稳定的,相反,如果在某一季度抗体阳性率有所升高,说明猪场在管理与卫生消毒方面存在问题。应加以改正。  7、对发病猪场要严密封锁;对发病猪场周围的猪场也要采取一定的措施,避免疾病扩散,对流产的胎衣、死胎及死猪都做好无害处理,产房彻底消毒;隔离病猪,对症治疗,改善饲喂条件等。  8、关于疫苗接种,总的来说目前尚无十分有效的免疫防制措施,目前国内外已推出商品化的PRRS弱毒疫苗和灭活苗,国内也有正式批准的灭活疫苗。然而,PRRS弱毒疫苗的返祖毒力增强的现象和安全性问题日益引起人们的担忧。国内外有使用弱毒疫苗而在猪群中引起多起PRRS的暴发,因此,应慎重使用活疫苗。虽然灭活疫苗的免疫效力有限或不确定,但从安全性角度来讲是没有问题的,因此在感染猪场,可以考虑给母猪接种灭活疫苗。  [编辑本段]八、药物防治  本病重在预防,应控制好应激及其他疾病的感染。现将有效的预防程序推荐如下:  1、 公猪每月或每季度预防一次:每吨饲料添加蓝圆康泰500g+支原必净500g,连用7天;  2、 母猪妊娠70~80天,产前7天~产后7天:每吨饲料添加蓝圆康泰500g+支原必净500g,连续饲喂;  3、 母猪断奶当天~7天:每吨饲料添加蓝圆康泰500g+支原必净500g,连续饲喂;  4、 后备母猪配种前7~15天:每吨饲料添加蓝圆康泰500g+支原必净500g,连续饲喂;  5、 仔猪断奶前3天~断奶后2周:每吨饲料添加蓝圆康泰500g+支原必净500g,连续饲喂;  6、 第18、22周龄分别使用一周:每吨饲料添加蓝圆康泰500g+支原必净500g,连续饲喂;  7、 每周两次消毒:速洁1:500倍稀释带猪喷雾。  每月两次熏蒸:速洁1:25倍稀释带猪熏蒸,每瓶(500ml)可熏蒸1250立方米。  对于已发病猪,可以采用中西药结合的方法进行治疗,方法如下。  猪蓝耳病的中药治疗:生石膏50克,生地黄18克,牡丹皮10克,赤芍10克,玄参15克,黄芩15克,连翘10克,银花藤20克,板蓝根15克;如有高热加水牛角30克,麦冬15克,丹参10克,加水2000毫升,浸泡30分钟,煎沸10分钟后,自然放凉。大猪每次100毫升,3-6次/日小猪每次20-50毫升,3次/日,患猪可保基本存活。  西药治疗:注射猪血清,口服阿莫西林粉,打干扰素,病猪隔离淘汰,所有的猪都做治疗。若有继发症,须使用混合血清,以增强效果。  注意事项:当病猪退烧并恢复食欲后,不可喂食,每日以少量清水掺以中药或西药饮之。否则,病情会反复持续发作,并不断加重。空腹使之饥饿,十余天后,肥猪渐渐变瘦,病情随之日渐缓解,或者康复。  该法经试验表明,效果良好。  治疗方案2  猪干扰素(IFN),每40公斤体重用量1毫升肌注,每日一次,连用3日,重症加量。全群强力霉素与黄芪多康拌料,连用7天。  特福(猪用转移因子),用法用量同干扰素,用注射用水分别稀释后,混合在一起注射。  圆环菌毒杀(复方甲磺酸培氟杀星注射液)每公斤体重3毫升肌注,连用3-5天。  方解:干扰素通过抑制病毒核酸的合成复制,具有广谱抗病毒作用;转移因子能增强肌体免疫机能,提高肌体抵抗力,二者协同使用效果加强。  圆环菌毒杀:有效抗菌成分作用于细菌复制所必需的DNA旋转酶的A亚基和B亚基,使细菌DNA的复制受阻,达到杀菌功效;其中,特殊抗病毒成分进入被病毒感染的细胞后,迅速磷酸化,竞争性抑制病毒合成酶,有效抑制病毒体内单磷酸次黄嘌呤(IMP)脱氢酶,从而阻断病毒核酸的合成,对RNA和DNA病毒都具有广谱抗病毒活性。与干扰素转移因子同用,抗病毒作用加强,效果更好。  本组方具有,广谱抗病毒、广谱抗菌和解热镇痛作用。对病毒性疫病,特别对蓝耳病、圆环病毒及其他细菌性混合感染,效果明显,治愈率很高。

关于遗传病的文献

遗传病是指由于遗传物质改变而造成的疾病。遗传病在上、下代之间按一定方式传递,同时,遗传病的发病也需要一定的环境因素。现在已被认识的遗传病有5000多种,包括镰刀型细胞贫血症、囊性纤维化病、血友病、白化病等等。遗传病对人类健康有很大危害,也严重影响人口素质。随着医学的发展,一些遗传病已经能够治疗,特别是1953年DNA双螺旋结构的发现,促使了分子医学的诞生,开始应用基因疗法治疗遗传病。预防遗传病患儿的生出,是极为重要的。现在应用羊膜穿刺等胚胎检测技术,在怀孕的初期,就可以确定胚胎是否有遗传缺陷。如果有缺陷,就采取堕胎。禁止近亲结婚,是减少遗传病的一项重要措施。  遗传病主要特点  遗传病是因遗传基因或遗传物质的改变导致的疾病。遗传物质只能在有血缘关系的成员中传递,并且受累个体可能在受精卵时期即已获得了致病基因,保持到终身。因此遗传病通常有以下几个特点:  ①家族聚集性。即家族中有多个成员患病,或者一对夫妇反复生育患同样病的病孩。  ②垂直传递性。遗传病只在血缘亲属中自上代往下代传递,无血缘的家族成员不受影响。血缘亲属中也不能横向传递,如哥哥不能传给弟弟。  ③先天性。这些基因大多可能在胚胎期已经发挥了致畸的作用。遗传病患者大多在母体内即已患病,很多遗传病患者在出生前或出生之时就有明显症状或畸型。  ④终身性。终身性意味着两点:  其一,对大多数遗传病还缺乏有效的临床治疗措施,一旦病情发生,很难彻底纠正或根治;  其二,主要是指无法改正患者的致病基因。患者通过饮食控制、内外科技术及当今发展起来的基因治疗  技术,在某种程序上可以改善甚至完全纠正临床症状,但是其致病基因仍保持终身,并通过生殖传给子女。

汗。。不会写。。你自己加油吧。。。

疾病简介 遗传病是指由遗传物质发生改变而引起的或者是由致病基因所控制的疾病。[编辑本段]疾病类型 由于遗传物质的改变,包括染色体畸变以及在染色体水平上看不见的基因突变而导致的疾病,统称为遗传病。根据所涉及遗传物质的改变程序,可将遗传病分为三大类: 其一是染色体病或染色体综合征,遗传物质的改变在染色体水平上可见,表现为数目或结构上的改变。由于染色体病累及的基因数目较多,故症状通常很严重,累及多器官、多系统的畸变和功能改变。 其二是单基因病,目前已经发现 5余种单基因病,主要是由单个基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。所谓显性基因是指等位基因中(一对染色体上相同座位上的基因)只要其中之一发生了突变即可导致疾病的基因。隐性基因是指只有当一对等位基因同时发生了突变才能致病的基因。 第三是多基因病,顾名思义,这类疾病涉及多个基因起作用,与单基因病不同的是这些基因没有显性和隐性的关系,每个基因只有微效累加的作用,因此同样的病不同的人由于可能涉及的致病基因数目上的不同,其病情严重程度、复发风险均可有明显的不同,如唇裂就有轻有重,有些人同时还伴有腭裂。值得注意的是多基因病除与遗传有关外,环境因素影响也相当大,故又称多因子病。很多常见病如哮喘、唇裂、精神分裂症、高血压、先心病、癫痫等均为多基因病。 遗传病是指完全或部分由遗传因素决定的疾病,常为先天性的,也可后天发病。如先天愚型、多指(趾)、先天性聋哑、血友病等,这些遗传病完全由遗传因素决定发病,并且出生一定时间后才发病,有时要经过几年、十几年甚至几十年后才能出现明显症状。如假肥大型肌营养不良要到儿童期才发病;慢性进行性舞蹈病一般要在中年时期才出现疾病的表现。有些遗传病需要遗传因素与环境因素共同作用才能发病,如孝喘病,遗传因素占80%,环境因素占20%;胃及十二指肠溃疡,遗传因素占30%~40%,环境因素占60%~70%。遗传病常在一个家族中有多人发病,为家族性的,但也有可能一个家系中仅有一个病人,为散发性的,如苯丙酮尿症,因其致病基因频率低,又是常染色体隐性遗传病,只有夫妇双方均带有一个导致该疾病的基因时,子女才会成为这种隐性致病基因的纯合子(同一基因座位上的两个基因都不正常)而得病,因此多为散发,特别在只有一个子女的家庭,偶有散发出现的遗传病患者,就不足为奇了。 那么,遗传病能够治疗吗? 以前,人们认为遗传病是不治之症。近年来,随着现代医学的发展,医学遗传学工作者在对遗传病的研究中,弄清了一些遗传病的发病过程,从而为遗传病的治疗和预防提供了一定的基础,并不断提出了新的治疗措施。家族遗传病 遗传性疾病是由于遗传物质改变而造成的疾病。 遗传病具有先天性、家族性、终身性、遗传性的特点。 遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。 三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。 上述遗传病并非携带致病基因就肯定会发病。 其实几乎所有的疾病都与基因有关系,也和环境有密切联系!遗传按生物体的照性状分,还可以分为质量性状和数量性状!所谓质量性状就是白种人和黄种人的差别,这主要是遗传决定的,受环境因数影响小。也就是男女的差别!数量性状即稻谷的重量,人的身高,颜色深浅等等,这些都叫数量性状。数量性状是多基因决定的,基因数一般不易测算,因为误差可以相差一个数量级。所以主要讲基因的总效应!数量性状受环境的影响非常大。可以说超过遗传因子! 总之,绝大部分疾病是环境因子和遗传因子共同作用的结果由于受精卵形成前或形成过程中遗传物质的改变造成的疾病。有人认为只有受父母遗传因素决定的疾病才是遗传病,这一认识不够全面。例如有一些染色体畸变并非由父母遗传因素决定,而是在受精卵形成过程中产生,习惯上染色体畸变都包括在遗传病的范畴内。还有人认为凡是受遗传因素影响的疾病都是遗传病,这一概念也不确切,因为在人类所有疾病中,除了少数几种(如外伤造成骨折)完全由环境因素所致,不受遗传因素影响外,几乎绝大多数疾病都是环境和遗传两方面因素互相作用的结果,只是两者影响疾病发生的程度可不相同。即使细菌感染、外伤后癫痫等环境因素十分明显的疾病,不同个体之间也存在着易感性的差异,而这种差异也是受遗传因素影响的,不可能把这些病都包括在遗传病的范畴之中。完全由遗传因素决定的疾病(A类,如21三体综合征)和完全由环境因素决定的疾病(D类, 如外伤性骨折)都是少数,而大多数人类疾病都居于B类和C类。B类指基本上由遗传因素决定,但需要环境中一定的诱因才发病,如苯丙酮酸尿症患儿在出生后摄入苯丙氨酸就会发病。 C类指遗传因素和环境因素都对发病起作用的疾病,如高血压病、感染等;但不同疾病的遗传度不同,即遗传因素影响越大,则遗传度就越高。所以从理论上来说, A、B、C等三类均属遗传病,但C类如感染、外伤后癫痫等在习惯上不包括在遗传病的范畴中。遗传病不同于先天性疾病,后者是指出生时就已表现出来的疾病。虽然不少遗传病在出生时就已表现出来,但也有些遗传病在出生时表现正常,而是在出生数日、数月,甚至数年、数十年后才开始逐渐表现出来,这显然不属于先天性疾病。另一方面,先天性疾病也并不都是遗传因素造成的,例如孕期母亲受放射线照射时所致的先天畸形,就不属于遗传病。遗传病也不同于家族性疾病。虽然有些由于同一个家族成员具有相同的遗传基础可表现遗传病的家族发病,但是不同的遗传病在亲代、子代之间的传递规律是复杂多样的,有些遗传病(如白化病等隐性遗传病)就可能没有家族史,另一方面,家族性疾病也可能由非遗传因素(如相同的生活条件)造成,如饮食中缺乏维生素 A使多个家族成员出现夜盲。 过去认为遗传病是一个较罕见的疾病,但随着医学的发展和人民生活水平的提高,一些过去严重威胁人类健康的传染病、营养性疾病得以控制,而遗传病成为比较突出的问题。如英国1914年的一项儿童死因调查表明,非遗传性疾病(如感染、肿瘤等)占5%,而遗传性疾病只占5%,但到20世纪70年代后期,两类疾病各占50%。国内的情况也同样,1951年北京市儿童的死亡原因中,感染性疾病占重要地位,但在1974~1976年儿童死因分析中,先天畸形占全部死因的4%,居首位,而在这些畸形中,属遗传病的达3~10名。另一方面,遗传病的病种非常多,随着生物学和医学的发展,近年发现新的遗传病更是层出不穷。表1 表明1958~1982年人类认识的单基因病的病种,至今已有4000种左右的遗传病被人们所认识。 简史 18 世纪法国人莫佩尔蒂第一个对遗传病作了家系调查,他分析了白化病的遗传方式。1814年亚当斯发表有关临床疾病遗传性质的论文,这被认为是近代最早的一篇系统论述遗传病的文章。1908年AE加罗德首次提出“先天代谢异常”的概念,将遗传与代谢联系起来,并认为尿酸尿症等先天代谢异常的遗传规律可以用孟德尔定律来解释,为医学遗传学作出了划时代的贡献。1949年L波林提出了“分子病”的概念。1944年比克尔首先提出控制新生儿营养,可有效防止苯丙酮酸尿症的发展,为遗传病的有效治疗开创了新的一章。1958年J勒热纳发现先天愚型患儿为三条21号染色体,这是第一次报道了遗传病的染色体异常。 1969年拉布斯发现了 X染色体的脆性部位,为染色体的畸变的研究开辟了一个新的领域。从60年代起,遗传病的产前诊断开始应用于临床。1978年卡恩和多齐首次将 DNA重组技术应用于遗传病的诊断,他们诊断了一例镰刀状细胞性贫血,此后这一诊断技术发展极为迅速。 分类 按照目前对遗传物质的认识水平,可将遗传病分为单基因遗传病、多基因遗传病和染色体病三大类。 单基因遗传病 同源染色体中来自父亲或母亲的一对染色体上基因的异常所引起的遗传病。这类疾病虽然种类很多,3000种以上(见表[1958~1982年全世界报告的单基因遗传病的病种数]1958~1982年全世界报告的单基因遗传病的病种数),但是每一种病的患病率较低,多属罕见病。欧美国家统计,约1%的新生儿患有较严重的基因病。按照遗传方式又可将单基因病分为四类:①常染色体显性遗传病。人类的23对染色体中,一对与性别有关,称为性染色体,其余22对均称常染色体。同源常染色体上某一对等位基因彼此相同的,称为纯合子,一对基因彼此不同的称杂合子。如果在杂合状态下,异常基因也能完全表现出遗传病的,称为常染色体显性遗传病,如多指并指、先天性肌强直,这类遗传病的发生与性别无关,男女患病率相同。父母中有一位患此疾病,其子女中就可能出现患者。据估计,约7‰新生儿患有常显体显性遗传病。②常染色体隐性遗传病。常染色体上一对等位基因必须均是异常基因纯合子才能表现出来的遗传病。大多数先天代谢异常均属此类。父母双方虽然外表正常,但如果均为某一常显体隐性遗传基因的携带者,其子女仍有可能患该种遗传病。近亲婚配时容易产生纯合状态,所以其子女隐性遗传病的发病率也高。③常染色体不完全显性遗传病。这是当异常基因处于杂合状态时,能且仅能在一定程度上表现出症状的遗传病。如地中海贫血,引起该病的异常基因为,纯合子 表现为重症贫血,杂合子则表现为中等程度的贫血④ 伴性遗传病。分为X连锁遗传病和Y连锁遗传病两种。有些遗传病的基因位于X染色体上,Y染色体过于短小,无相应的等位基因,因此,这些异常基因将随X染色体传递,所以称为X连锁遗传病。也分为显性和隐性两种,前者是指有一个X染色体的异常基因就可表现出来的遗传病,由于女性拥有两条X染色体而男性只有一条,所以女性获得该显性基因的机会较多,发病率高于男性,但这类遗传病为数很少,至今仅知10余种。如Xg血型,又如抗维生素D佝偻病是 X连锁不完全显性遗传病。X连锁隐性遗传病是指X染色体上等位基因在纯合状态下才发病者,在女性,只有当两条X染色体上的一对等位基因都属异常时才患病,如果其中有一条 X染色体的等位基因正常就不会患有此病。但是男性只有一条X染色体,只要X染色体上的基因异常,就会表现出遗传病,所以男性发病率高于女性发病率。这种伴性隐性遗传病占伴性遗传病的绝大部分,例如红绿色盲、血友病等都比较常见。据估计约1‰新生儿患有X连锁遗传病。 Y连锁遗传病的致病基因位于Y染色体上,X染色体上则无相应的等位基因,因此这些基因随着Y染色体在上下代间传递,也叫全男性遗传。在人类中属于 Y连锁遗传病的有外耳道多毛症等。 多基因遗传病 与两对以上基因有关的遗传病。每对基因之间没有显性或隐性的关系,每对基因单独的作用微小,但各对基因的作用有积累效应。一般说来,多基因遗传病远比单基因遗传病多见。受环境因素的影响,不同的多基因遗传病,受遗传因素和环境因素影响的程度也不同。遗传因素对疾病发生的影响程度,可用遗传度来说明,一般用百分数来表示,遗传度越高,说明这种多基因遗传病受遗传因素的影响越大。例如唇裂、腭裂是多基因遗传病,其遗传度达76%,而溃疡病仅37%。多基因遗传病还包括一些糖尿病、高血压病、高脂血症、神经管缺陷、先天性心脏病、精神分裂症等。在人群中,多基因遗传病的患病率在2~3%以上。 染色体病 指由于染色体的数目或形态、结构异常引起的疾病。新生儿中染色体异常的发病率为 5%。染色体异常称为染色体畸变,包括常染色体的异常和性染色体的异常。但是染色体病在全部遗传病中所占的比例不大,仅约1/10。 遗传病的研究和诊断 要研究判断某一疾病是否为遗传病可通过以下几个途径:家系调查及分析、挛生子分析、种族比较,伴随性状研究、动物模型和 DNA分析。通过家系调查、分析并与人群发病情况比较,不仅可以判断某病是否为遗传病,如果是遗传病的话,还可进一步确定其遗传方式。通过单卵孪生和双卵孪生同胞发病的一致率分析,可能判断某种病受遗传因素及环境因素影响的程度。不同种族和民族发病情况的比较,尤其是对同样生活环境不同种族的发病率的研究可能为遗传病的判断提供重要线索。在伴随症状分析中,目前应用最多的是同种白细胞抗原(HLA)系统,应用这一系统作为遗传病标志。研究作为某一遗传的伴随性状,进行连锁分析,则也能为遗传病的判断提供依据。目前已建立了数十种染色体畸变和单基因遗传病的动物模型,为遗传病的研究提供了有力手段。 DNA分析是近年来发展的重要手段,其中以限制片断长度多态性(RFLP)分析在遗传病判断中应用最多。 遗传病的临床诊断比其他疾病更困难。一方面遗传病的种类极多,另一方面每一种遗传病的单独发病率很低,所以临床医师在遗传病的诊断上不容易取得经验。除了一般疾病的诊断方法(如病史、体格检查、实验室和仪器检查)外,遗传病的诊断还可能需要依靠一些特殊的诊断手段,如染色体检查,特殊的生化学测定及系谱分析。遗传病的临床表现是最重要的诊断线索,每一种遗传病都有一些症状、体征同时存在,被称为“综合征”,这是提示诊断的最初线索,也是选择实验室检查和其他遗传学检查的依据。对遗传病患者必须要详细询问家族史并绘制准确可靠的家系谱,对家系谱的分析不仅是遗传病诊断的一项依据,而且对遗传方式的判明及进行遗传咨询也是极为重要的。皮纹分析是遗传病诊断的另一种特殊手段,主要对染色体病最有价值,对其他个别单基因遗传病也可能有一定意义,常用于临床检查的是指纹、掌纹、掌褶纹、指褶纹和脚掌纹。许多遗传病的最后诊断,还有赖于染色体检查和特殊的生化测定或DNA分析。 产前诊断是遗传病诊断的一个重要方面,在婴儿出生以前通过穿刺取得羊水或绒毛组织。进行染色体检查、特异的酶活性或代谢产物测定,或进行DNA分析对胎儿的发病情况作出判断,决定是否需要进行人工流产以终止妊娠,这在减少遗传病患儿的出生,提高人口素质方面具有重要意义,尤其在目前人类对大多数遗传病还不能进行有效治疗的条件下,用终止妊娠来防止遗传病患儿的出生更具有突出的意义。近年来由于 B型超声扫描仪的广泛应用和技术的提高,在产前诊断,尤其是发育畸形的诊断上有很大的价值。胎儿镜也开始应用于产前诊断。 基因诊断是新发展起来的一项重要技术,也能对近百种遗传病作出准确的诊断,但是由于这些遗传病大多数还不能作有效治疗,所以从医学伦理学的观点来看,除应用于产前诊断外,基因诊断的推广仍存在很大问题。 治疗和预防,要根治遗传病,应该从基因水平或染色体水平来纠正已发生的缺陷,这种方法称为基因治疗,属于基因工程的范畴。但是基因治疗在理论上、技术上还存在着极大的困难,目前谈不上临床应用。目前对遗传病所能进行的治疗只是在早期诊断的前提下,通过控制环境条件(如饮食成分等),调节代谢过程,防止症状的出现,称为“环境工程”。目前能应用于环境工程的治疗包括饮食控制疗法(如苯丙酮尿症用低或无苯丙酮酸奶粉喂养)、药物疗法(如用维生素B6治疗B6 依赖症,用别嘌呤醇治疗痛风等)、手术治疗(如脾切除术治疗遗传性球形红细胞增多症)、酶的补充(如异体骨髓移植治疗戈谢氏病)和对症疗法(如用抗癫痫药物控制苯丙酮酸尿症的惊厥)等。环境工程虽然可以减轻或消除一些遗传病的症状,对个体来说是有利的,但是治疗结果却使带有致病基因的患者不仅存活下来,甚至还能继续繁殖后代,而这些患者如果不经治疗本来可以自然淘汰,至少不会繁衍后代。所以环境工程对整个人类的影响可能是有害的,它将使致病基因的频率在人群中逐代提高,从而导致遗传病发病率的增高。 正因为目前对大多数遗传病尚无有效治疗方法,所以遗传病的预防就有特别重要的意义。预防措施包括新生儿筛查、环境保护、携带者的检出和遗传咨询等方面。新生儿筛查是指对所有出生的婴儿进行某项遗传病的简单检查,以便在症状出现以前就开始治疗,防止症状发生。只有那些在症状出现以前就可以通过检查发现生化异常,而且已有治疗措施,而不给予治疗日后又会造成严重残疾的遗传病才进行新生儿筛查。苯丙酮酸尿症和先天性甲状腺功能低下在许多国家已列为法定新生儿筛查项目。中国自1982年以来在北京、上海、天津、武汉等地也进行了一些筛查。其中1985年发表的全国12省市的苯丙酮酸尿症筛查是中国第一次报告的较大规模的新生儿筛查。生物素基酶缺陷的新生儿筛查在国际上也还是一个新课题,中国从1987年开始已在北京开始了这项筛查工作。环境保护是指减少或消除环境中的致畸剂、致癌剂、致染色体畸变剂和致基因突变剂,主要是工农业生产中产生的污染。携带者检出是指将那些外表正常,但带有致病基因或异常染色体的个体从人群中检出,对其婚姻和生育进行指导,防止其后代发生这种遗传病,检出的方法主要是染色体检查、特异的酶活性测定或代谢产物测定以及DNA分析,目前已能对染色体平衡易位及百余种单基因病作携带者的检出,对这些遗传病的预防有重要意义。遗传咨询, 1952年首先出现在美国,中国70年代以后才开展起来,是医务人员对遗传病患者及其家属对该遗传病的病因、遗传方式、防治、预后,以及提出的各项问题进行解答,并对患者的同胞子女再患此病的危险率作出估计,给予建议和指导。可以认为遗传咨询、产前诊断和终止妊娠三者为防止遗传病患者出生的“三部曲”。有人把婚姻咨询和生育咨询也纳入遗传咨询的范畴内,这些工作对优生优育具有重大意义。

关于遗传病的论文

遗传病,是指遗传物质发生改变或者由致病基因所控制的疾病,通常具有垂直传递和终身性的特征因此,遗传病具有由亲代向后代传递的特点这种传递不仅是指疾病的传递,最根本的是指致病基因的传递所以,遗传病的发病表现出一定的家族性父母的生殖细胞(精子和卵细胞)里携带的致病基因,通过生殖传给子女并引起发病,而且这些子女结婚后还可能把致病基因传给下一代  单基因遗传病(1种病由1对基因决定)约有3360多种,如家族性多发性结、成骨不全症、 牛皮癣 、高胆固醇血症、多囊肾、神经纤维瘤、视网膜母细胞瘤、腓肌萎缩症、软骨发育不全、上睑下垂、全身自化、 着色性干皮病、鱼鳞症、眼球震颤、视网膜色素变性、抗维生素D佝偻病等。  常染色体显性遗传病(多指、并指、结肠息肉)  常染色体隐性遗传病(苯丙酮尿症、先天聋哑、高度近视等)。半x染色体隐性遗传病(血友病)人群中受累人数约占10%左右。  多基因遗传病(每种病由多对基因和环境因素共同作用),病种虽不多,但发病率高,多为常见病和多发病。如原发性 高血压 、支气管 哮喘 、 冠心病 、 糖尿病 、类风湿性关节炎、 精神分裂 症、 癫痫 、先天性 心脏病 、 消化性溃疡 、下肢 静脉曲张 、 青光眼 、肾结石、脊柱裂、无脑儿、唇裂、腭裂、畸形足等。  其特点是:家族聚集 受环境影响较大。人群中受累人数约占20%左右。  染色体病(染色体异常所致的遗传病)近500种,如先天愚型(伸舌样痴呆)、原发性小睾症、先天性卵巢发育不全症、 两性 畸形等。人群中受累人数约占1%左右。  一个最为有效的方法就是提倡和实行优生:禁止近亲结婚:可以大大降低隐性遗传病的发生概率。  进行产前诊断。  有遗传病史的夫妻还要进行遗传咨询,主要要调查家族史。  在适合的生育年龄生育(24~29周岁)  [编辑本段]常见遗传病  遗传病是指由于遗传物质改变所致的疾病。具有先天性、终生性和家族性。病种多、发病率高。目前已发现的遗传病超过3000种,估计每100个新生儿中约有3~10个患有各种程度不同的遗传病。  高血压  遗传危险度:★★★★★  科学家已培育成功一种“遗传性自发高血压”老鼠。这种老鼠会把高血压的基因一代代传下去,它们的子孙100%会发生高血压,这是高血压与遗传密切相关的最典型例子。  目前多数学者认为,高血压属于多基因遗传性疾病。通过高血压患者家系调查发现,父母均患有高血压者,其子女今后患高血压概率高达45%;父母一方患高压病者,子女患高血压的几率是28%;而双亲血压正常者其子女患高血压的概率仅为3%。  防治原则  坚持监测血压,正常状态下至少每年1次。  限盐补钾。逐步把每日摄入食盐的量控制到5克,同时多吃富含钾的水果、蔬菜(如香蕉、核桃仁、莲子、芫荽、苋菜、菠菜等)。  防止超重和肥胖。  戒烟限酒。  糖尿病  遗传危险度:★★★★★  糖尿病具有明显遗传易感性(尤其是临床上最常见的2型糖尿病)。家系研究发现,有糖尿病阳性家族史的人群,其糖尿病患病率显著高于家族史阴性人群。而父母都有糖尿病者,其子女患糖尿病的机会是普通人的15~20倍。  防治原则  诱发糖尿病的“外因”有热量摄取太多,活动量下降,肥胖,吸烟以及心理压力过大等。反过来,避免以上因素就可预防糖尿病。在饮食方面,应该做到粮食、肉蛋奶、蔬菜、水果的合理搭配,注意摄入量与消耗量平衡。常测体重,如果体重增加了,热量肯定摄入过量,这时就应检讨你的食谱并增加运动。  血脂异常  遗传危险度:★★★  血脂代谢异常有许多原因,其中之一就是遗传因素。随着医学科学发展,目前已经发现有相当部分血脂异常患者存在一个或多个遗传基因缺陷。由遗传基因缺陷所致血脂异常多具有家族聚集性,有明显遗传倾向,临床上通称为家族性血脂异常。  防治原则  最重要的是强调“迈开腿,管住嘴”。一方面要适当限制饮食,但食物种类应尽量丰富,选用低脂食物(植物油、酸牛奶),增加维生素、纤维素(水果、蔬菜、面包和谷类食物),控制体重。同时加强锻炼,使热量消耗掉才不至于使脂肪在体内堆积。  乳腺癌  遗传危险度:★★★  乳腺癌有明显的家族遗传倾向。流行病学调查发现,5%~10%的乳腺癌是家族性的。如有一位近亲患乳腺癌,则患病的危险性增加5~3倍;如有两位近亲患乳腺癌,则患病率将增加7倍。发病的年龄越轻,亲属中患乳腺癌的危险越大。  防治原则  有乳腺癌家族史者要特别注意自查,以发现乳癌的蛛丝马迹,早期治疗。乳房包块是乳腺癌最常见的体征,这种包块与乳腺增生包块不同,常为单个,形态不规则,质地较硬,活动度不好,大多无疼痛,与月经周期无明显关系。此外,如发现有乳头湿疹、溢液、皱缩,也应引起重视,到医院做进一步检查。  胃癌  遗传危险度:★★★  胃癌患者有明显的家族聚集性。调查发现,胃癌患者的一级亲属(即父母和亲兄弟姐妹)得胃癌的危险性比一般人群平均高出3倍。比较著名的如拿破仑家族,他的祖父、父亲以及三个妹妹都因胃癌去世,整个家族包括他本人在内共有7人患了胃癌。  防治原则  患胃癌危险因素包括缺乏体育锻炼、精神压抑、吸烟、喜食烟熏食品、喜食重盐饮食、过量摄入肉类、幽门螺杆菌感染、胃溃疡等。而喜食菌类、新鲜水果是胃癌的保护因素。值得注意的是,胃癌的家族聚集现象可能与共同感染幽门螺杆菌有关,有胃癌家族史者应去医院监测有无该细菌感染,有则及时治疗。  大肠癌  遗传危险度:★★★  家族遗传导致的大肠癌占大肠癌发病总人数的10%~15%。亲属中有大肠癌患者的人,患此病的危险性比普通人大3~4倍,如果家族中有两名或以上的近亲(父母或兄弟姐妹)患大肠癌,则为大肠癌的高危人群。  防治原则  有大肠癌家族史者应多吃新鲜食物,少吃腌、熏食物,不吃发霉食物,少饮含酒精饮料,戒烟。如出现以下症状要及时去医院检查:  ①大便习惯改变,大便次数增多,或腹泻与便秘交替出现。②大便带脓血或黏液便。③大便变细、变形,排便费力。④时有排便感,却无大便解出。  肺癌  遗传危险度:★★  国外研究机构对超过2万名日本中老年人展开了长达13年的追踪调查,他们中共出现了791例肺癌。研究者将直系亲属有肺癌患者和没有肺癌患者的两组人进行对比,结果发现前者患病几率是后者的2倍。肺癌的遗传性在女性身上表现得尤为明显。  防治原则  肺癌的发生与吸烟密切相关,特别是那些有家族肺癌病史的人,一定要远离烟草和被动吸烟。如果出现刺激性咳嗽、痰血等症状,尤其是上述高危人群,应尽早找医生诊治。如果能早期发现并规范治疗,肺癌的治愈率可以达到70%。  哮喘  遗传危险度:★★★★★  目前多数学者认为,哮喘发病的遗传因素大于环境因素。如果父母都有哮喘,其子女患哮喘的几率可高达60%;如果父母中有一人患有哮喘,子女患哮喘的可能性为20%;如果父母都没有哮喘,子女患哮喘的可能性只有6%左右。此外,如果家庭成员及其亲属患有过敏性疾病如过敏性鼻炎、皮肤过敏或食物、药物过敏等,也会增加后代患哮喘的可能性。  防治原则  成人哮喘多在儿童期发病,儿童期早治疗是减少成人期发病率的关键。有哮喘家族史者应避免各种引发哮喘的环境因素,如吸入各种过敏物质(过敏原)、呼吸道病毒和细菌感染、吸烟和空气污染等,这些因素在哮喘发病和加剧中起触发和推波助澜的作用。平时要做好居室、生活和工作环境的清洁卫生,戒烟,积极预防和及时治疗呼吸道感染等。  抑郁症  遗传危险度:★★★★★  许多研究都发现抑郁症的发生与遗传因素有较密切的关系,抑郁症患者的亲属中患抑郁症的概率远高于一般人,约为10~30倍,而且血缘关系越近,患病概率越高。据国外报道,抑郁症患者亲属中患抑郁症的概率为:一级亲属(父母、同胞、子女)为14%,二级亲属(伯、叔、姑、姨、舅、祖父母或孙子女、甥侄)为8%,三级亲属(堂、表兄妹)为6%。  防治原则  抑郁症的防治应以早期发现、早期诊断、早期治疗为主。如果经常出现闷闷不乐、体重显著增加或减少、失眠或睡眠过多、坐立不安、注意力不集中、有轻生念头等现象,要及时去医院检查治疗。  老年痴呆  遗传危险度:★★★  科学家在长期研究后发现,老年性痴呆是一种多基因遗传病。研究发现,父母或兄弟中有老年性痴呆症患者,患老年性痴呆症的可能性要比无家族史者高出4倍。  防治原则  如果有老年性痴呆家族遗传史的,50岁以后就应该进行检查,看有没有智力方面的障碍,以便及时采取一些措施进行治疗。  除遗传因素外,教育程度低者易患老年痴呆,而接受过正规教育的人其发病年龄比未受过教育者推迟7~10年。此外,长期情绪抑郁、离群独居、文化水平和语言水平低、丧偶且不再婚、不参加社交活动、缺乏体力和脑力活动等也易致老年性痴呆症。  以上各类遗传病发病率加起来约为30%,而且还有逐年增加的趋势。因此,不能再笼统他说遗传病只是一种罕见之症。预防遗传病患儿的降生,是提高我国人口素质的重要优生手段。  绝大多数遗传病无法治愈。  因为现代医学还不能改变已出生的人的基因,所以只要致病基因还在,就无法治愈。但是某些病可以通过不停地用药来缓解病情。  [编辑本段]家族遗传病  遗传性疾病是由于遗传物质改变而造成的疾病。  遗传病具有先天性、家族性、终身性、遗传性的特点。  遗传病的种类大致可分为三类:  一、单基因病。  单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种:  显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。  隐性遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。  性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。  二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。  三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。  上述遗传病并非携带致病基因就肯定会发病。  其实几乎所有的疾病都与基因有关系,也和环境有密切联系!遗传按生物体的照性状分,还可以分为质量性状和数量性状!所谓质量性状就是白种人和黄种人的差别,这主要是遗传决定的,受环境因数影响小。也就是男女的差别!数量性状即稻谷的重量,人的身高,颜色深浅等等,这些都叫数量性状。数量性状是多基因决定的,基因数一般不易测算,因为误差可以相差一个数量级。所以主要讲基因的总效应!数量性状受环境的影响非常大。可以说超过遗传因子!  总之,绝大部分疾病是环境因子和遗传因子共同作用的结果!  [编辑本段]饮食治疗  某些遗传病可通过控制饮食达到阻止疾病发生的目的,从而收到治疗效果。如苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺陷,使苯丙氨酸和苯丙酮酸在体内堆积而致病,可出现患儿智力低下或成为白痴。可是如果诊断准确,在早期最好在出生后7-10天开始着手防治,在出生后3个月内,给患儿低苯丙氨酸饮食,如大米、大白菜、菠菜、马铃薯、羊肉等,则可促使婴儿正常生长发育。等到孩子长大上学时,再适当放宽对饮食的限制。  又如,我国长江以南各省均有5%的人患遗传性葡萄糖6-磷酸脱氢酶缺乏症,临庆表现为溶血性贫血,严重时可危及生命。这类病人对蚕豆尤其敏感,进食蚕豆后即可引起急性溶血性贫血,故又称“蚕豆病”。对这类患者应严格禁食蚕豆及其制品。同时,这种病还可引起药物性溶血、感染性溶血和遗传性非球形细胞溶血性贫血等,故平时用药必须慎重。  [编辑本段]药物治疗  药物在遗传病的治疗中往往起一定的辅助作用,从而改善患者的病情,减少痛苦。主要是对症治疗,如服止痛剂以减轻病员疼痛。还可以改善机体代谢,如肝豆状核变性,主要是体内铜代谢障碍,使血内铜的水平升高,导致胎儿畸形。可以服用促进铜排泄的药物,同时限制食用含铜的食物,以保持体内铜的正常水平,而达到良好的治疗效果。还有些病如先天性低免疫球蛋白血症,可以注射免疫球蛋白制剂,以达到治疗的目的。  [编辑本段]手术治疗  手术矫治指采用手术切除某些器官或对某些具有形态缺陷的器官进行手术修补的方法。如球形红细胞增多症,由于遗传缺陷使患者的红细胞膜渗透脆性明显增高,红细胞呈球形,这种红细胞在通过脾脏的脾窦时极易被破坏而引起溶血性贫血。可以实施脾切除术,脾切除后虽然不能改变红细胞的异常形态,但却可以延长红细胞的寿命,获得治疗效果。对于多指、兔唇及外生殖器畸形等,可通过手术矫治。又如,狐臭也是一种遗传病,但只要将患者腋下分泌过旺的腺体剜掉,即可消除病患。  基因疗法  基因治疗遗传是一种根本的和有希望的方法。人类的遗传物质,也可以像“虾子向蚯蚓借眼睛”的故事一样,向别的生物借用。即向基因发生缺陷的细胞注入正常基因,以达到治疗目的。基因治疗说起来简单,可事实上是一个相当复杂的问题。首先必须从数十万基因中找出缺陷基因,同时必须制备出相应的正常基因,然后将正常基因转入细胞内替代缺陷基因,并能够进行正常的表达作用。此种治疗方法,目前还处在研究和探索阶段之中。  值得特别提出的是,在基因疗法还没有彻底研究出来的现阶段,遗传病中能够用上述几种简单方法进行治疗的,毕竟只是少数,而且这类治疗只有治标的作用,即所谓“表现型治疗”,只能消除一代人的病痛,而对致病基因本身却丝毫未触及。那些致病基因将一如既往,按照固有规律传递给患者的子孙后代。  [编辑本段]分析研究  由于受精卵形成前或形成过程中遗传物质的改变造成的疾病。有人认为只有受父母遗传因素决定的疾病才是遗传病,这一认识不够全面。例如有一些染色体畸变并非由父母遗传因素决定,而是在受精卵形成过程中产生,习惯上染色体畸变都包括在遗传病的范畴内。还有人认为凡是受遗传因素影响的疾病都是遗传病,这一概念也不确切,因为在人类所有疾病中,除了少数几种(如外伤造成骨折)完全由环境因素所致,不受遗传因素影响外,几乎绝大多数疾病都是环境和遗传两方面因素互相作用的结果,只是两者影响疾病发生的程度可不相同。即使细菌感染、外伤后癫痫等环境因素十分明显的疾病,不同个体之间也存在着易感性的差异,而这种差异也是受遗传因素影响的,不可能把这些病都包括在遗传病的范畴之中。完全由遗传因素决定的疾病(A类,如21三体综合征)和完全由环境因素决定的疾病(D类, 如外伤性骨折)都是少数,而大多数人类疾病都居于B类和C类。B类指基本上由遗传因素决定,但需要环境中一定的诱因才发病,如苯丙酮酸尿症患儿在出生后摄入苯丙氨酸就会发病。 C类指遗传因素和环境因素都对发病起作用的疾病,如高血压病、感染等;但不同疾病的遗传度不同,即遗传因素影响越大,则遗传度就越高。所以从理论上来说, A、B、C等三类均属遗传病,但C类如感染、外伤后癫痫等在习惯上不包括在遗传病的范畴中。遗传病不同于先天性疾病,后者是指出生时就已表现出来的疾病。虽然不少遗传病在出生时就已表现出来,但也有些遗传病在出生时表现正常,而是在出生数日、数月,甚至数年、数十年后才开始逐渐表现出来,这显然不属于先天性疾病。另一方面,先天性疾病也并不都是遗传因素造成的,例如孕期母亲受放射线照射时所致的先天畸形,就不属于遗传病。遗传病也不同于家族性疾病。虽然有些由于同一个家族成员具有相同的遗传基础可表现遗传病的家族发病,但是不同的遗传病在亲代、子代之间的传递规律是复杂多样的,有些遗传病(如白化病等隐性遗传病)就可能没有家族史,另一方面,家族性疾病也可能由非遗传因素(如相同的生活条件)造成,如饮食中缺乏维生素 A使多个家族成员出现夜盲。  过去认为遗传病是一个较罕见的疾病,但随着医学的发展和人民生活水平的提高,一些过去严重威胁人类健康的传染病、营养性疾病得以控制,而遗传病成为比较突出的问题。如英国1914年的一项儿童死因调查表明,非遗传性疾病(如感染、肿瘤等)占5%,而遗传性疾病只占5%,但到20世纪70年代后期,两类疾病各占50%。国内的情况也同样,1951年北京市儿童的死亡原因中,感染性疾病占重要地位,但在1974~1976年儿童死因分析中,先天畸形占全部死因的4%,居首位,而在这些畸形中,属遗传病的达3~10名。另一方面,遗传病的病种非常多,随着生物学和医学的发展,近年发现新的遗传病更是层出不穷。表1 表明1958~1982年人类认识的单基因病的病种,至今已有4000种左右的遗传病被人们所认识。  简史 18 世纪法国人莫佩尔蒂第一个对遗传病作了家系调查,他分析了白化病的遗传方式。1814年亚当斯发表有关临床疾病遗传性质的论文,这被认为是近代最早的一篇系统论述遗传病的文章。1908年AE加罗德首次提出“先天代谢异常”的概念,将遗传与代谢联系起来,并认为尿酸尿症等先天代谢异常的遗传规律可以用孟德尔定律来解释,为医学遗传学作出了划时代的贡献

疾病简介 遗传病是指由遗传物质发生改变而引起的或者是由致病基因所控制的疾病。[编辑本段]疾病类型 由于遗传物质的改变,包括染色体畸变以及在染色体水平上看不见的基因突变而导致的疾病,统称为遗传病。根据所涉及遗传物质的改变程序,可将遗传病分为三大类: 其一是染色体病或染色体综合征,遗传物质的改变在染色体水平上可见,表现为数目或结构上的改变。由于染色体病累及的基因数目较多,故症状通常很严重,累及多器官、多系统的畸变和功能改变。 其二是单基因病,目前已经发现 5余种单基因病,主要是由单个基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。所谓显性基因是指等位基因中(一对染色体上相同座位上的基因)只要其中之一发生了突变即可导致疾病的基因。隐性基因是指只有当一对等位基因同时发生了突变才能致病的基因。 第三是多基因病,顾名思义,这类疾病涉及多个基因起作用,与单基因病不同的是这些基因没有显性和隐性的关系,每个基因只有微效累加的作用,因此同样的病不同的人由于可能涉及的致病基因数目上的不同,其病情严重程度、复发风险均可有明显的不同,如唇裂就有轻有重,有些人同时还伴有腭裂。值得注意的是多基因病除与遗传有关外,环境因素影响也相当大,故又称多因子病。很多常见病如哮喘、唇裂、精神分裂症、高血压、先心病、癫痫等均为多基因病。 遗传病是指完全或部分由遗传因素决定的疾病,常为先天性的,也可后天发病。如先天愚型、多指(趾)、先天性聋哑、血友病等,这些遗传病完全由遗传因素决定发病,并且出生一定时间后才发病,有时要经过几年、十几年甚至几十年后才能出现明显症状。如假肥大型肌营养不良要到儿童期才发病;慢性进行性舞蹈病一般要在中年时期才出现疾病的表现。有些遗传病需要遗传因素与环境因素共同作用才能发病,如孝喘病,遗传因素占80%,环境因素占20%;胃及十二指肠溃疡,遗传因素占30%~40%,环境因素占60%~70%。遗传病常在一个家族中有多人发病,为家族性的,但也有可能一个家系中仅有一个病人,为散发性的,如苯丙酮尿症,因其致病基因频率低,又是常染色体隐性遗传病,只有夫妇双方均带有一个导致该疾病的基因时,子女才会成为这种隐性致病基因的纯合子(同一基因座位上的两个基因都不正常)而得病,因此多为散发,特别在只有一个子女的家庭,偶有散发出现的遗传病患者,就不足为奇了。 那么,遗传病能够治疗吗? 以前,人们认为遗传病是不治之症。近年来,随着现代医学的发展,医学遗传学工作者在对遗传病的研究中,弄清了一些遗传病的发病过程,从而为遗传病的治疗和预防提供了一定的基础,并不断提出了新的治疗措施。家族遗传病 遗传性疾病是由于遗传物质改变而造成的疾病。 遗传病具有先天性、家族性、终身性、遗传性的特点。 遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。 三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。 上述遗传病并非携带致病基因就肯定会发病。 其实几乎所有的疾病都与基因有关系,也和环境有密切联系!遗传按生物体的照性状分,还可以分为质量性状和数量性状!所谓质量性状就是白种人和黄种人的差别,这主要是遗传决定的,受环境因数影响小。也就是男女的差别!数量性状即稻谷的重量,人的身高,颜色深浅等等,这些都叫数量性状。数量性状是多基因决定的,基因数一般不易测算,因为误差可以相差一个数量级。所以主要讲基因的总效应!数量性状受环境的影响非常大。可以说超过遗传因子! 总之,绝大部分疾病是环境因子和遗传因子共同作用的结果由于受精卵形成前或形成过程中遗传物质的改变造成的疾病。有人认为只有受父母遗传因素决定的疾病才是遗传病,这一认识不够全面。例如有一些染色体畸变并非由父母遗传因素决定,而是在受精卵形成过程中产生,习惯上染色体畸变都包括在遗传病的范畴内。还有人认为凡是受遗传因素影响的疾病都是遗传病,这一概念也不确切,因为在人类所有疾病中,除了少数几种(如外伤造成骨折)完全由环境因素所致,不受遗传因素影响外,几乎绝大多数疾病都是环境和遗传两方面因素互相作用的结果,只是两者影响疾病发生的程度可不相同。即使细菌感染、外伤后癫痫等环境因素十分明显的疾病,不同个体之间也存在着易感性的差异,而这种差异也是受遗传因素影响的,不可能把这些病都包括在遗传病的范畴之中。完全由遗传因素决定的疾病(A类,如21三体综合征)和完全由环境因素决定的疾病(D类, 如外伤性骨折)都是少数,而大多数人类疾病都居于B类和C类。B类指基本上由遗传因素决定,但需要环境中一定的诱因才发病,如苯丙酮酸尿症患儿在出生后摄入苯丙氨酸就会发病。 C类指遗传因素和环境因素都对发病起作用的疾病,如高血压病、感染等;但不同疾病的遗传度不同,即遗传因素影响越大,则遗传度就越高。所以从理论上来说, A、B、C等三类均属遗传病,但C类如感染、外伤后癫痫等在习惯上不包括在遗传病的范畴中。遗传病不同于先天性疾病,后者是指出生时就已表现出来的疾病。虽然不少遗传病在出生时就已表现出来,但也有些遗传病在出生时表现正常,而是在出生数日、数月,甚至数年、数十年后才开始逐渐表现出来,这显然不属于先天性疾病。另一方面,先天性疾病也并不都是遗传因素造成的,例如孕期母亲受放射线照射时所致的先天畸形,就不属于遗传病。遗传病也不同于家族性疾病。虽然有些由于同一个家族成员具有相同的遗传基础可表现遗传病的家族发病,但是不同的遗传病在亲代、子代之间的传递规律是复杂多样的,有些遗传病(如白化病等隐性遗传病)就可能没有家族史,另一方面,家族性疾病也可能由非遗传因素(如相同的生活条件)造成,如饮食中缺乏维生素 A使多个家族成员出现夜盲。 过去认为遗传病是一个较罕见的疾病,但随着医学的发展和人民生活水平的提高,一些过去严重威胁人类健康的传染病、营养性疾病得以控制,而遗传病成为比较突出的问题。如英国1914年的一项儿童死因调查表明,非遗传性疾病(如感染、肿瘤等)占5%,而遗传性疾病只占5%,但到20世纪70年代后期,两类疾病各占50%。国内的情况也同样,1951年北京市儿童的死亡原因中,感染性疾病占重要地位,但在1974~1976年儿童死因分析中,先天畸形占全部死因的4%,居首位,而在这些畸形中,属遗传病的达3~10名。另一方面,遗传病的病种非常多,随着生物学和医学的发展,近年发现新的遗传病更是层出不穷。表1 表明1958~1982年人类认识的单基因病的病种,至今已有4000种左右的遗传病被人们所认识。 简史 18 世纪法国人莫佩尔蒂第一个对遗传病作了家系调查,他分析了白化病的遗传方式。1814年亚当斯发表有关临床疾病遗传性质的论文,这被认为是近代最早的一篇系统论述遗传病的文章。1908年AE加罗德首次提出“先天代谢异常”的概念,将遗传与代谢联系起来,并认为尿酸尿症等先天代谢异常的遗传规律可以用孟德尔定律来解释,为医学遗传学作出了划时代的贡献。1949年L波林提出了“分子病”的概念。1944年比克尔首先提出控制新生儿营养,可有效防止苯丙酮酸尿症的发展,为遗传病的有效治疗开创了新的一章。1958年J勒热纳发现先天愚型患儿为三条21号染色体,这是第一次报道了遗传病的染色体异常。 1969年拉布斯发现了 X染色体的脆性部位,为染色体的畸变的研究开辟了一个新的领域。从60年代起,遗传病的产前诊断开始应用于临床。1978年卡恩和多齐首次将 DNA重组技术应用于遗传病的诊断,他们诊断了一例镰刀状细胞性贫血,此后这一诊断技术发展极为迅速。 分类 按照目前对遗传物质的认识水平,可将遗传病分为单基因遗传病、多基因遗传病和染色体病三大类。 单基因遗传病 同源染色体中来自父亲或母亲的一对染色体上基因的异常所引起的遗传病。这类疾病虽然种类很多,3000种以上(见表[1958~1982年全世界报告的单基因遗传病的病种数]1958~1982年全世界报告的单基因遗传病的病种数),但是每一种病的患病率较低,多属罕见病。欧美国家统计,约1%的新生儿患有较严重的基因病。按照遗传方式又可将单基因病分为四类:①常染色体显性遗传病。人类的23对染色体中,一对与性别有关,称为性染色体,其余22对均称常染色体。同源常染色体上某一对等位基因彼此相同的,称为纯合子,一对基因彼此不同的称杂合子。如果在杂合状态下,异常基因也能完全表现出遗传病的,称为常染色体显性遗传病,如多指并指、先天性肌强直,这类遗传病的发生与性别无关,男女患病率相同。父母中有一位患此疾病,其子女中就可能出现患者。据估计,约7‰新生儿患有常显体显性遗传病。②常染色体隐性遗传病。常染色体上一对等位基因必须均是异常基因纯合子才能表现出来的遗传病。大多数先天代谢异常均属此类。父母双方虽然外表正常,但如果均为某一常显体隐性遗传基因的携带者,其子女仍有可能患该种遗传病。近亲婚配时容易产生纯合状态,所以其子女隐性遗传病的发病率也高。③常染色体不完全显性遗传病。这是当异常基因处于杂合状态时,能且仅能在一定程度上表现出症状的遗传病。如地中海贫血,引起该病的异常基因为,纯合子 表现为重症贫血,杂合子则表现为中等程度的贫血④ 伴性遗传病。分为X连锁遗传病和Y连锁遗传病两种。有些遗传病的基因位于X染色体上,Y染色体过于短小,无相应的等位基因,因此,这些异常基因将随X染色体传递,所以称为X连锁遗传病。也分为显性和隐性两种,前者是指有一个X染色体的异常基因就可表现出来的遗传病,由于女性拥有两条X染色体而男性只有一条,所以女性获得该显性基因的机会较多,发病率高于男性,但这类遗传病为数很少,至今仅知10余种。如Xg血型,又如抗维生素D佝偻病是 X连锁不完全显性遗传病。X连锁隐性遗传病是指X染色体上等位基因在纯合状态下才发病者,在女性,只有当两条X染色体上的一对等位基因都属异常时才患病,如果其中有一条 X染色体的等位基因正常就不会患有此病。但是男性只有一条X染色体,只要X染色体上的基因异常,就会表现出遗传病,所以男性发病率高于女性发病率。这种伴性隐性遗传病占伴性遗传病的绝大部分,例如红绿色盲、血友病等都比较常见。据估计约1‰新生儿患有X连锁遗传病。 Y连锁遗传病的致病基因位于Y染色体上,X染色体上则无相应的等位基因,因此这些基因随着Y染色体在上下代间传递,也叫全男性遗传。在人类中属于 Y连锁遗传病的有外耳道多毛症等。 多基因遗传病 与两对以上基因有关的遗传病。每对基因之间没有显性或隐性的关系,每对基因单独的作用微小,但各对基因的作用有积累效应。一般说来,多基因遗传病远比单基因遗传病多见。受环境因素的影响,不同的多基因遗传病,受遗传因素和环境因素影响的程度也不同。遗传因素对疾病发生的影响程度,可用遗传度来说明,一般用百分数来表示,遗传度越高,说明这种多基因遗传病受遗传因素的影响越大。例如唇裂、腭裂是多基因遗传病,其遗传度达76%,而溃疡病仅37%。多基因遗传病还包括一些糖尿病、高血压病、高脂血症、神经管缺陷、先天性心脏病、精神分裂症等。在人群中,多基因遗传病的患病率在2~3%以上。 染色体病 指由于染色体的数目或形态、结构异常引起的疾病。新生儿中染色体异常的发病率为 5%。染色体异常称为染色体畸变,包括常染色体的异常和性染色体的异常。但是染色体病在全部遗传病中所占的比例不大,仅约1/10。 遗传病的研究和诊断 要研究判断某一疾病是否为遗传病可通过以下几个途径:家系调查及分析、挛生子分析、种族比较,伴随性状研究、动物模型和 DNA分析。通过家系调查、分析并与人群发病情况比较,不仅可以判断某病是否为遗传病,如果是遗传病的话,还可进一步确定其遗传方式。通过单卵孪生和双卵孪生同胞发病的一致率分析,可能判断某种病受遗传因素及环境因素影响的程度。不同种族和民族发病情况的比较,尤其是对同样生活环境不同种族的发病率的研究可能为遗传病的判断提供重要线索。在伴随症状分析中,目前应用最多的是同种白细胞抗原(HLA)系统,应用这一系统作为遗传病标志。研究作为某一遗传的伴随性状,进行连锁分析,则也能为遗传病的判断提供依据。目前已建立了数十种染色体畸变和单基因遗传病的动物模型,为遗传病的研究提供了有力手段。 DNA分析是近年来发展的重要手段,其中以限制片断长度多态性(RFLP)分析在遗传病判断中应用最多。 遗传病的临床诊断比其他疾病更困难。一方面遗传病的种类极多,另一方面每一种遗传病的单独发病率很低,所以临床医师在遗传病的诊断上不容易取得经验。除了一般疾病的诊断方法(如病史、体格检查、实验室和仪器检查)外,遗传病的诊断还可能需要依靠一些特殊的诊断手段,如染色体检查,特殊的生化学测定及系谱分析。遗传病的临床表现是最重要的诊断线索,每一种遗传病都有一些症状、体征同时存在,被称为“综合征”,这是提示诊断的最初线索,也是选择实验室检查和其他遗传学检查的依据。对遗传病患者必须要详细询问家族史并绘制准确可靠的家系谱,对家系谱的分析不仅是遗传病诊断的一项依据,而且对遗传方式的判明及进行遗传咨询也是极为重要的。皮纹分析是遗传病诊断的另一种特殊手段,主要对染色体病最有价值,对其他个别单基因遗传病也可能有一定意义,常用于临床检查的是指纹、掌纹、掌褶纹、指褶纹和脚掌纹。许多遗传病的最后诊断,还有赖于染色体检查和特殊的生化测定或DNA分析。 产前诊断是遗传病诊断的一个重要方面,在婴儿出生以前通过穿刺取得羊水或绒毛组织。进行染色体检查、特异的酶活性或代谢产物测定,或进行DNA分析对胎儿的发病情况作出判断,决定是否需要进行人工流产以终止妊娠,这在减少遗传病患儿的出生,提高人口素质方面具有重要意义,尤其在目前人类对大多数遗传病还不能进行有效治疗的条件下,用终止妊娠来防止遗传病患儿的出生更具有突出的意义。近年来由于 B型超声扫描仪的广泛应用和技术的提高,在产前诊断,尤其是发育畸形的诊断上有很大的价值。胎儿镜也开始应用于产前诊断。 基因诊断是新发展起来的一项重要技术,也能对近百种遗传病作出准确的诊断,但是由于这些遗传病大多数还不能作有效治疗,所以从医学伦理学的观点来看,除应用于产前诊断外,基因诊断的推广仍存在很大问题。 治疗和预防,要根治遗传病,应该从基因水平或染色体水平来纠正已发生的缺陷,这种方法称为基因治疗,属于基因工程的范畴。但是基因治疗在理论上、技术上还存在着极大的困难,目前谈不上临床应用。目前对遗传病所能进行的治疗只是在早期诊断的前提下,通过控制环境条件(如饮食成分等),调节代谢过程,防止症状的出现,称为“环境工程”。目前能应用于环境工程的治疗包括饮食控制疗法(如苯丙酮尿症用低或无苯丙酮酸奶粉喂养)、药物疗法(如用维生素B6治疗B6 依赖症,用别嘌呤醇治疗痛风等)、手术治疗(如脾切除术治疗遗传性球形红细胞增多症)、酶的补充(如异体骨髓移植治疗戈谢氏病)和对症疗法(如用抗癫痫药物控制苯丙酮酸尿症的惊厥)等。环境工程虽然可以减轻或消除一些遗传病的症状,对个体来说是有利的,但是治疗结果却使带有致病基因的患者不仅存活下来,甚至还能继续繁殖后代,而这些患者如果不经治疗本来可以自然淘汰,至少不会繁衍后代。所以环境工程对整个人类的影响可能是有害的,它将使致病基因的频率在人群中逐代提高,从而导致遗传病发病率的增高。 正因为目前对大多数遗传病尚无有效治疗方法,所以遗传病的预防就有特别重要的意义。预防措施包括新生儿筛查、环境保护、携带者的检出和遗传咨询等方面。新生儿筛查是指对所有出生的婴儿进行某项遗传病的简单检查,以便在症状出现以前就开始治疗,防止症状发生。只有那些在症状出现以前就可以通过检查发现生化异常,而且已有治疗措施,而不给予治疗日后又会造成严重残疾的遗传病才进行新生儿筛查。苯丙酮酸尿症和先天性甲状腺功能低下在许多国家已列为法定新生儿筛查项目。中国自1982年以来在北京、上海、天津、武汉等地也进行了一些筛查。其中1985年发表的全国12省市的苯丙酮酸尿症筛查是中国第一次报告的较大规模的新生儿筛查。生物素基酶缺陷的新生儿筛查在国际上也还是一个新课题,中国从1987年开始已在北京开始了这项筛查工作。环境保护是指减少或消除环境中的致畸剂、致癌剂、致染色体畸变剂和致基因突变剂,主要是工农业生产中产生的污染。携带者检出是指将那些外表正常,但带有致病基因或异常染色体的个体从人群中检出,对其婚姻和生育进行指导,防止其后代发生这种遗传病,检出的方法主要是染色体检查、特异的酶活性测定或代谢产物测定以及DNA分析,目前已能对染色体平衡易位及百余种单基因病作携带者的检出,对这些遗传病的预防有重要意义。遗传咨询, 1952年首先出现在美国,中国70年代以后才开展起来,是医务人员对遗传病患者及其家属对该遗传病的病因、遗传方式、防治、预后,以及提出的各项问题进行解答,并对患者的同胞子女再患此病的危险率作出估计,给予建议和指导。可以认为遗传咨询、产前诊断和终止妊娠三者为防止遗传病患者出生的“三部曲”。有人把婚姻咨询和生育咨询也纳入遗传咨询的范畴内,这些工作对优生优育具有重大意义。

大厦大后天是许昌v ask和大家爱好卡机那机会哦案件 好的骄傲的话好好的还很多打算打算打算打算的dha都阿萨ufhf好受很多海东岸是独一uiaoausd偶啊u盾分红与花搜捕哦啊速度

我看到过(亚洲遗传病病例研究)里面专门写这样的论文`~

相关百科

热门百科

首页
发表服务