首页

> 论文期刊知识库

首页 论文期刊知识库 问题

碳纤维相关文献怎么写

发布时间:

碳纤维相关文献怎么写

搜一下:谁推荐点碳纤维方面的参考文献

在强调节能环保的时代,轻量化是一个重要的主题,碳纤维的出现无疑给制造的可持续发展带来了希望。本文从原材料、工艺路线、制造设备和内外部环境来看我们国内做碳纤维的差在什么地方。从技术角度看中国为什么量产不出好的碳纤维基本概念:什么是炭化和石墨化?【炭化】就是有机纤维在高温下裂解,逸出氢、氧、氮等小分子,最后留下碳元素的这么一个过程。这是一个碳元素占比增加的一个过程,有文献把碳元素占比增加到92%后才称为碳纤维。【石墨化】就是碳材料内部碳原子在高温下进行重新排列,慢慢趋向于完美六元网格的一个过程。在碳纤维内部就是原先比较杂乱的碳原子排列次序慢慢趋向于规整排列的乱层石墨结构的过程。把碳纤维加热到1500℃,如果这个过程是一个碳元素聚集的过程,它就叫炭化;如果在这个温度下碳元素不再聚集保持在固定占比比例,而是碳原子排列趋向于规整六元网格结构,那么它就是石墨化过程。所以炭化和石墨化没有明显的温度界限,哪一种趋势更明显就称为哪一种过程。不同的原材料在不同温度下的趋势是不一 样的,炭化和石墨化都是一个过程,不是最终结果,不要以温度来区分炭化和石墨化。关于强度和模量。将材料损坏所使用的最大力就是【强度】。如果是拉伸损坏就是拉伸强度,如果是弯曲损坏就是弯曲强度也叫抗折强度,如果是压坏就是压缩强度。【模量】就是将材料施加外力使其变形一定尺寸所用的力就。将材料拉长一定尺寸所用的力就是拉伸模量,同样还有弯曲模量和压缩模量。什么是好纤维要想知道为什么搞不好碳纤维先得知道什么是好的碳纤维。首先一根纤维应该是均匀直径,均匀物相,每一段纤维都与整根纤维一样,强度在一定范围内。在一根纤维上不同地方截取一段纤维,如果它们的强度比较均匀则是好纤维。其次同一束纤维有n多根纤维,这些纤维的强度比较均匀则是好纤维。最后,所有纤维所有部分强度、模量和尺寸等性能均比较均匀达到标称标准就是好纤维。我标称3500MPa强度的碳纤维,每一根纤维和纤维每一段都符合要求,均匀分布在2000MPa,这也不叫好纤维。所以好纤维就是又均匀又标准。日本碳纤 维做的比我们好就是因为它们的碳纤维更接近这一标准。我们中国的碳纤维差就差在均匀性上了,标称T700的碳纤维有的纤维比T1000还高,有的还不如 T300。中国为什么做不好碳纤维?到底什么因素影响了碳纤维的均匀性,需要我们从原材料开始审视整个工艺路线。第一,原材料纤维状碳材料需要利用含有碳原子链的高分子进行炭化来得到。经常用来炭化的高分子有三种:纤维素(Rayon)、聚丙烯腈(PAN)、沥青(pitch),今天讲的是聚丙烯腈。如果原丝不均匀,里面含有很多杂质或者缺陷,这些缺陷就会传给碳纤维,所以要想造出好的碳纤维必须有好的原丝。原丝是怎么来的呢?是用聚丙烯腈进行纺丝做出来的。聚丙烯腈是粉末,首先将聚丙烯腈溶于一种溶剂,出于保密的考虑,我不会告诉你这种溶剂叫二甲基亚砜。聚丙烯腈可以溶于这种溶剂,但是不能溶于水,但这种溶剂可以和水无限互溶。我们将聚丙烯腈与这种溶剂混合物通过类似淋浴似的喷丝头喷出来,喷到这种溶剂的水溶 液里,因为聚丙烯腈不溶于水,遇到水会凝固成一根根的聚丙烯腈原丝,这时候的原丝非常粗,同时原丝里面的溶剂要扩散出来,我们会通过n级溶液进行扩散。这 里的溶液浓度是逐级降低的,有利于溶剂向外扩散。等扩散完之后,原丝就会进入水洗阶段,这个时候在往前走的时候给它施加牵引力,原丝就会在牵引力的作用下慢慢变细,最终通过致密化,然后收丝。为了防止纤维和纤维之间粘连,中间还需要弄上上浆剂。这就是整个原丝的生产流程,如果用的聚丙烯腈原材料不好或者不均匀,那么纺丝过程原丝必然会有很大缺陷。都知道聚丙烯腈是丙烯腈聚合起来的,这种丙烯腈聚合的时候还需要添加一些催化剂,把这些原料都倒入水中,让它们在水中聚合,聚合出来的聚丙烯腈不溶于水,于是产生沉淀。将水过滤掉就得到聚丙烯腈。同时这个聚合过程是一种放热过程,所以必须慢慢调节原材料进入水的速度,让这个过程极可能缓和,同时还需要冷却,防止过热。这个过程很难控制,水中有各种聚合单体,还有产生的沉淀物,很可能会发生某一种原材料在反应容器中分布不均匀,造成聚丙烯腈不能达到所要求的标准。这就是原材料的影响因素,它们的反应机理还需要更系统的进行研究。第二,制备工艺从聚合时候的温度、流量、搅拌速度到纺丝时候各级凝固浴、水浴的温度、速度,还有预氧化、炭化等过程,碳纤维制备过程中的这些工艺参数怎么组合才能得到最好的碳纤维,是一个问题。国内基本上都是差不多主义,没有谁真正塌下心来去研究这些参数的每一项,一个参数造成的缺陷不算多,可能很多参数没有优化,最后的碳纤维就差了十万八千里了。还有就是我们如果要优化这许多的参数,需要一个庞大的试验计划,有谁能有资金支持这些实验呢。为了尽早做出产品,都在不断妥协妥协,结果却造不出好产品。所以制备工艺上,我们还需要有很多路要走,别看我们能做出号称T300水平、T700水平碳纤维,只是不是太均匀。要是能做产品性能均匀了,付出的努力将n倍于造出差不多的产品。所以国内很多企业用便宜的价格卖差不多的产品也是无奈,因为日本均匀性好的碳纤维价格不会高太多,为了这不太多的差价去付出几十倍的努力提高均匀性,企业会做这种事吗?第三,制造装备工艺参数的调试需要制造设备来实现。想一想如果我们想试验不同牵伸率对碳纤维性能的影响,将工艺参数输入在控制器上,而牵伸辊却速度不稳定,还振动,那我们还能做得好吗?别以为这个问题好解决,一个牵引机上好几个辊,速度都要调节好,关键是微振动,几乎测不到的震动都会影响产品性能。干喷湿纺工艺,喷丝头与 液面的距离是非常严格的,液面波动将会影响凝固效果。高温碳化炉温度均匀性怎么解决?怎么让纤维进入炉子的时候不被带入微量的氧气?预氧化炉温度梯度如何实现?热风如何循环才能最节能同时还能带走释放的热量?氧气量如何控制……这些都是非常细微的东西,却对设备提出极高的要求。不可否认我们国内设备这些年发展非常迅速,可是看看我们的领导人出访美国,要求放宽对中国高端设备出口,就知道我们有多么的底气不足了。第四,内外部环境有人可能知道日本碳纤维早期的价格吧,现在的价格远远低于原先价格。什么时候降下来的呢?就是在我们宣布能产业化生产T300水平碳纤维那几年。什么原因? 是日本想跟我们竞争吗?不可能,日本人知道我们发展水平,它即使不降价我们也竞争不过他,我们无非能分走一些低端订单,根本无法动摇日本的垄断地位。日本最主要的目的是打击投资者。投资者看准碳纤维发展前景和利润才决定投钱研究碳纤维的。如果碳纤维还是高利润,投资者必然会乐意投钱去做一些基础性研究,将眼光放长远些。但是看看现在做碳纤维的苦日子,还不如做制品的过得好呢,谁还会继续投资啊,更别说长远眼光了。所以国家也很着急,也在大力扶持企业,原先很多企业为了国家扶持而上马项目,从国家拿到不少钱,结果还是不行。前年工信部发布《促进碳纤维产业发展的意见》,明确表示重点扶持2-3家企业,这个思路是对了,但是对于基础性的研究,国家还得拿出更多的资金牵头去做。还 有,我们国家碳纤维产业链还不太完整,有一些本末倒置。整个行业健康的发展应该是下游拉动上游,而我国下游创新不足,大家都在模仿,卖产品,而缺乏定制化的解决方案的能力。未来国产碳纤维能发展到什么程度,需要每一个碳纤维人的努力,我们在做是因为我们相信明天会更好。

碳纤维相关文献

搜一下:谁推荐点碳纤维方面的参考文献

碳纤维用途比铝还要轻,比钢还要硬,比重是铁的1/4,强度是铁的10倍,这就是世界范围内炙手可热高科技材料碳纤维。随着其用途日益多样化、核心化,全球航天航空、体育休闲和工业应用中碳纤维替代钢铁广泛采用。由于碳纤维复合材料密度低、刚性好合强度高,成为一种先进的航天材料。我国对碳/碳烧蚀材料相关的科技问题进行了深入地研究,其研究成果已在导弹发射管、固体火箭发动机壳体、卫星和飞船上等得到应用。飞机和汽车制造碳纤维作为汽车材料,最大的优点是质量轻、强度大,重量仅相当于钢材的20%~30%,硬度却是钢材的10倍以上。美国波音公司推出新一代高速宽体客机—“音速巡洋舰”,约60 %的结构部件都将采用强化碳纤维塑料复合材料制成。我国自行研制的碳纤维复合材料刹车预制件,其性能已全面达到国外水平。采用这一预制件技术所制备的的国产碳/碳刹车盘已批量装备于国防重点型号的军用飞机,并在B757-200型民航飞机上使用,在其它机型上的使用也在实验考核中,并将向坦克、高速列车、高级轿车、赛车等推广使用。体育休闲用品体育应用中的三项重要应用为高尔夫球棒、钓鱼杆和网球拍框架。目前,据估计每年的高尔夫球棒的产量为3400万副。全世界碳纤维钓鱼杆的产量约为每年2000万副。网球拍框架的市场容量约为每年600万副,其它的体育项目应用还包括冰球棍、滑雪杖、射箭和自行车,同时,碳纤维还应用在划船、赛艇、冲浪和其它的海洋运动项目中。风力发电机叶片如今,世界上风力发电机组的发电机额定功率越来越大,与其相适应的风机叶片尺寸也越来越大。为了减少叶片的变形,在主乘力件如轴承和叶片的某些部位采用碳纤维来补充其刚度。碳纤维加固建筑结构我国从1997年开始从国外引进碳纤维复合材料加固混凝土结构技术,并开始进行相关研究。由于其巨大的技术优势,近几年,上海悍马建筑科技有限公司联合清华、同济、复旦等国内高校相关学者、教授开展了此项研究工作,并取得了一批接近国际先进水平的研究成果。由于我国具有世界上最为巨大的土木建筑市场,碳纤维加固材料基本都使用上海悍马的。如:东方明珠、苹果(上海)研发中心、上海环球国际中心、白云机场、上海世博园等。其他应用在铁路建筑中,大型的顶部系统和隔音墙在未来会有很好的应用,这些也将是碳纤维很有前景的应用方面。压力容器主要用在汽车的压缩天然气(CNG)罐上,而且还用在救火队员的固定式呼吸器(SCBA)上。碳纤维的其它应用包括机器部件、家用电器、微机及与半导体相关的设备的复合材料的生产,可以用来起到加强、防静电和电磁波防护的作用。另外,在X射线仪器市场上,碳纤维的应用可以减少人体在X 射线下的暴露。

碳纤维相关文献有哪些

今年的赛车车身是用什么材料做的?由 寒冰皇冠 发表在虎扑·F1赛车场

碳纤维是一种密度很低的含碳量在95%以上的一种纤维材料,这种新型的纤维材料现在在很多领域都有帮助,因其性能方面导电性能好、耐高温等优点,在国内外运用都非常广泛。碳纤维材料有一个非常重要的作用,在航天方面作用非常显著,这种材料可以帮助制造火箭、飞机等大型设备,想要了解更多碳纤维的知识以及用途,就随着小编来了解一下吧。    碳纤维,是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性,在国防军工和民用方面都是重要材料。制成的碳纤维单向板材能充分发挥碳纤维的强度和弹性模量,在施工时可免除碳纤维单向织物的树脂固化阶段,强度利用效率高,施工方便。    碳纤维板的特性:  1、机械强度高,优越的耐磨性,耐化学性能、防静电效果优越;  2、耐温长期使用在280度,瞬间使用温度可达到310-350度;  3、尺寸稳定性好,变形小,易加工,使用寿命长  4、碳纤维板能持续在260℃的操作温度的苛刻环境中,短时温度可以达到350度也不会造成高温纳米复合材料(合成石)积层分离。合成石碳纤维板能改善PCBA在波峰式焊锡过程中的品质,避免金手指或接触孔因为人为的碰触而受到污染。  碳纤维板的用途:混凝土梁抗弯、抗剪加固,混凝土楼板、桥板加固补强、混凝土、砖砌体墙,剪刀墙补强,桥墩、桩等柱加固补强,烟囱、隧道、水池、混凝土管等加固补强。    碳纤维在现在的制造业的运用越来越多了,因为碳纤维的优良性能很多,传统的玻璃纤维不及碳纤维的导电性、导热性、耐腐蚀性好,把碳纤维运用在混凝土加固时,它的强度高、耐腐蚀性能好等特点,在土木建筑中作用可不小,更坚固、安全性能更高,运用在车辆外壳里,变得更坚固,抗冲击,家用汽车得到更好保护。小编对碳纤维板介绍就到这里了。  碳纤维板厂家  1、上海滠口实业有限公司  上海滠口实业有限公司是专业从事建筑结构加固材料研发生产销售及施工技术服务为一体的新兴高科技企业。公司依托上海同济、房科院等著名机构下属的结构科研所,共同开发出SKO加固系列产品,主要产品有,植筋胶、碳纤维布(东丽丝、台丽丝)、碳纤维板,粘钢胶,灌浆料,机械锚栓等加固系列产品。  2、深圳市索林科技有限公司  索林科技2009年成立于世界电子之都深圳。公司自成立以来专注电子材料产品,抓住国家产业升级和电子行业高速发展带来的历史机遇,通过不懈努力一步步发展壮大。为更好的服务客户,公司开拓行业纵深,致力于绝缘板、覆铜板的生产销售。大力发展环氧板,防静电环氧板和碳纤维板,无卤素玻纤板材等的生产与加工,以满足客户需求。  3、卡本复合材料(上海)有限公司  卡本复合材料(上海)有限公司(以下简称上海卡本)为卡本复合材料(天津)有限公司全资子公司,业务范围包括结构加固材料的产品供应、技术咨询、技术服务,作为卡本东部地区的仓储、物流中心等工作,致力于更好的为江浙沪地区的客户提供优质便捷的服务,发挥出上海营销中心的作用,打造出一流的物流服务体系。 上海卡本依托母公司强大的研发与技术能力,供应高质量的碳纤维补强材料、粘钢胶、灌钢胶等传统结构加固材料。以上就是有关碳纤维板的用途的相关内容,希望能对大家有所帮助!

[赛车车身质材];1、碳素夹层板,为制造车壳,复合材料专家把铝制蜂窝结构夹在两块碳素纤维板之间,然后在真空炉中使之聚合,结果这种板材比普通铝板重量轻1倍,强度高1倍。2、诺梅克斯(NOMEX)蜂窝结构,诺梅克斯蜂窝结构用于车壳的狭窄部分,例如鼻锥形车头。虽然刚性不如铝,但它较轻,柔性好,容易加工 参考:碳纤维素碳纤维素 车身也是用碳纤维材料做的。BRAUN,CULLMANN,REFLECTA这几家德国老牌器材公司现在的日子有些不太好过,展台基本没有什么观众,也很少有客户,与那SCHUMI的方向盘,车身全都都是碳纤维材料。 碳纤维材料碳纤维素 F1赛车车身是钛合金制造的!我曾经编发这样一篇文章,现在摘录给你参考。科学发现报曾介绍过F1赛车,读者们深深为赛车运动的极限速度和车手高超的技术所折服。近日,记者在“第八届哈尔滨国际车展”一睹了F1赛车的庐山真面目。为满足读者要求,现将F1赛车全面介绍如下:F1赛车 钛合金造一级方程式大奖赛俗称F1,是从国际汽联1950年起所举办的“国际汽联世界冠军赛(The FIA World Championship)”开始的。全世界第一场F1大奖赛在英国银石(Silverstone)赛道举行,参赛车辆的规格以1947年出台的规则为依据,引擎最大排气量为4500毫升非增压引擎或者1500毫升机械增压引擎。现在,F1赛车经过长途跋涉后首次抵达哈尔滨,在哈尔滨车展上亮相,运送F1赛车的是美孚公司提供的专用集装箱。  据悉,采用钛合金制成的这台F1赛车是02款,是迈凯伦·梅赛德斯车队的专用车,全车重量652公斤,车身高73厘米,正常时速为360公里。价值100万英磅,约合人民币1500万元。F1赛车的到来,给广大车迷创造了零距离真实感受F1赛车的难得机遇,观看F1赛车的同时,还可模拟驾驶F1赛车。大庆、齐齐哈尔、牡丹江、佳木斯等地的众多车迷爱好者及协会组织了多个团队,来哈尔滨车展专程观看F1赛车,并购买F1赛车1:18模型作为参观本次F1赛车的留念。参考文献:科学发现报2005年9月6日 封底碳纤维材料碳纤维素碳纤维材料 [赛车车身质材];1、碳素夹层板,为制造车壳,复合材料专家把铝制蜂窝结构夹在两块碳素纤维板之间,然后在真空炉中使之聚合,结果这种板材比普通铝板重量轻1倍,强度高1倍。2、诺梅克斯(NOMEX)蜂窝结构,诺梅克斯蜂窝结构用于车壳的狭窄部分,例如鼻锥形车头。虽然刚性不如铝,但它较轻,柔性好,容易加工 碳纤维材料做的。F1赛车采用的单壳体车身称得上是现代工程的杰作,它由碳纤维和蜂窝状铝板材料在车体模型上“粘贴”成型后,经过高温高压下结合而来。有人乐称其为“三明治”结构:两外层为碳纤维,中间是蜂窝状铝板。此外,在车身某些地方(如打孔处),还使用了吐弗诺(tufnol)(现代防弹衣的用料)以实现局部加固。碳纤维材料碳纤维碳纤维素做的碳纤维素的材料碳纤维素碳纤维材料 碳纤维F1赛车的碳纤维层数平均是12层,另外在最中央的部分铺设蜂巢结构压缩而成碳纤维 碳纤维材料

碳纤维材料论文怎么写

如果脱模方便的话就做个模具·直接卷模具上,厚度还好控制,成像后直接把铁芯拿掉就好了。但是形状复杂的还是这个用充气袋的比较好!

你碳纤维的碳字写成炭,差距很大的哦

高性能纤维性能分析【摘要】分析了碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑 (POB)纤维和 M5 纤维等高性能纤维的重要特性以及它们的应用状况。 【关键词】高性能纤维;先进复合材料;分子结构;重要特性;应用 [中图分类号]TS102,528 [文献标识码]A [文章编号]1002-3348(2005)01-0054-04 高性能纤维 (High-Performance Fibers)是从 20 世纪 60 年代开始研发并推广的纤维材 料, 它的出现使传统纺织工业产生了巨大变革。 所谓高性能纤维是指有高的拉伸强度和压缩 3 强度、耐磨擦、高的耐破坏力、低比重(g/m )等优良物性的纤维材料,它是近年来纤维高分 子材料领域中发展迅速的一类特种纤维。 高性能纤维可用于防弹服、 蹦床布等特种织物的加 工及纤维复合材料中的加固材料,其发展涉及许多不同的领域。本文分析和比较了碳纤维、 超高强聚乙烯纤维、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO)纤维、M5 纤维等高性能 纤维的特性以及它们的应用状况。 1 高性能纤维 1·1 高性能纤维分类 无机纤维:碳纤维、硼纤维、陶瓷纤维等。 有机纤维:超高强聚乙烯纤维(HPPE)、芳香族聚酰胺纤维、聚对苯撑苯并双恶唑(PBO) 纤维、M5 纤维等。 1·2 碳纤维 碳纤维的生产始于 20 世纪 60 年代末 70 年代初, 由有机纤维如腈纶(PAN)纤维、 粘胶纤 维或沥青纤维经预氧化、 炭化和石墨化加工而成。 碳纤维的石墨六方晶体结构决定了其强度 大、模量高等优良性能,如日本东丽公司生产的 T-400 碳纤维,拉伸强度可达 2GPa,断 裂伸长率为 5%。碳纤维不燃烧,化学性能稳定,不受酸、盐等溶媒侵蚀。 1·3 超高强聚乙烯纤维 高强高模聚乙烯在 20 世纪 70 年代出现, 具有超高分子量, 高取向度, 且分子间距很近, 3 使纤维具备高强高模的特征, 其密度具有 97g/cm , 是唯--能浮在水面上的高强高模纤维。 除此之外,其他机械性能亦比较突出,如良好的韧性和耐疲劳性能,耐高速冲击性等。 1·4 芳香族聚酰胺纤维 20 世纪 70 年代,人们开始从事液晶态纺丝技术的研究,用于纺制高性能纤维,与普通 纺丝的分子结构截然不同,液晶态纺丝时形成的分子链只有刚棒状高取向的有序结构。 图 1 液态高聚物分子的构型示意图 (a)为典型普通大分子,为无规则线团;(b)为刚性大分子, 在没有良好侧向作用和导向情况下的状态;(c)为无规的棒状 液晶;(d)为向列型液晶 芳香族聚酰胺是最为人所熟知的,通过液晶纺丝纺制的高性能纤维,如 Kevlar(聚对苯 二甲酰对苯二胺纤维)、 Twaron(聚对苯二甲酰间苯二胺纤维)、 Technora(聚对苯二甲酰对苯 二胺纤维)等,如图 3 所示,为芳香族聚酰胺高结晶和高取向分子结构。这类纤维性能比较 均衡,具有高强伸性能, 高韧性、耐腐蚀、耐冲击、较好的热稳定性,不导电,除了强酸和强碱外,具有较强的抗化 学性能。 图 3 芳香族聚酰胺晶体结构图 聚对苯撑苯并双恶唑(PBO)纤维 1998 年国际产业纤维展览会上,日本东洋纺展出了商品名为 Zylon 的 PBO 纤维,其化 学名为聚对苯撑苯并双恶唑,化学结构为: 1·5 PBO 纤维采用液晶纺丝法纺丝,由苯环和苯杂环组成的刚棒状分子结构以及分子链的高 取向度, 决定了它的优良性能。 PBO 初纺普通丝(AS 丝-标准型)就具有 5N/tex 以上的强度 和 84N/tex 以上弹性模量, 经热处理后可得到强度不变、 模量达 4N/tex 的高模量丝 (HM 丝-高模量型)。PBO 作为一种新型高性能纤维,具有高强度、高模量、耐热性、阻燃性 4 大特点,其强度与模量相当于 Kevlar (凯夫拉)的 2 倍,限氧指数(L01)为 68,热分解温 度高达 650℃,在有机纤维中为最高,被认为是目前具有最高耐热性能的有机材料之一。 表 1 PBO 纤维的性能 性能 PBO 一 AS PBO—HM 密度(g/cm3) 54 56 抗拉强度(GPa) 8 8 拉伸模量(GPa) 180 280 断裂延伸率(%) 5 5 热分解温度(℃) 650 650 L01(%) 68 68 表 2 PBO 纤维与其他纤维的主要性能比较 性能 PBO-HM Kevlar-49 宇航级碳纤维 密度(g/cm ) 纤维直径(?m) 抗拉强度(Gpa) 拉伸模量(CPa) 断裂延伸率(%) 3 56 24 8 280 5 45 12 2 115 0 80 6 58 230 5 热分解温度(℃) 650 550 一 1·6 M5 纤维 PBO 纤维推出的几年后,阿克卓·诺贝尔(Akzo Nobel)公司开发了一种新型液晶芳族杂 环聚合物:聚[2,5-二烃基-1,4-苯撑吡啶并二咪唑],简称 "M5"或 PlPD,化学结构为: M5 纤维的结构与 PBO 分子相似——刚棒结构。 M5 分子链的方向上存在大量的-OH 和-NH 在 基团,容易形成强的氢键。如图 4 所示,与芳香族聚酰胺晶体结构不同,M5 在分子内与分 子间都有氢键存在,形成了氢键结合网络。 图 4 为 M5 纤维沿分子链轴方向的晶体结构,虚线为氢键。 图 4 M5 晶体结构 比较图 3 与图 4 可以清楚地看出,M5 大分子所形成的双向氢键结合的网络,类似一个 蜂窝。这种结构加固了分子链间的横向作用,使 M5 纤维具有良好的压缩与剪切特性,压缩 和扭曲性能为目前所有聚合物纤维之最。 2 高性能纤维特性分析比较 碳纤维石墨层面上碳-碳共价交键的存在,使作用于碳纤维上的应力,从一个石墨层转 移到相邻层面, 这些共价交键保证了碳纤维具有高的拉伸模量和压缩强度。 但这些共价键为 纯弹性键,一旦被打破,不可复原,即不显示任何屈服行为。所以碳纤维受力时,应力-应 变曲线是线性关系,纤维断裂是突然发生的。 有机纤维的性能取决于分子结构、分子链内键及分子链间结合键。如前所述,超高强聚 乙烯纤维、PBO 纤维都具有优良的性能,但由于超高强聚乙烯纤维大分子链间的结合键为弱 的范德华键,使其纤维易产生蠕变,压缩强力较低,另外超高强聚乙烯纤维耐热性和表面粘 合性有限,因而不适合用作加固纤维。而 PBO 纤维也因大分子链间没有形成氢键结合、作用 力较弱,使得其压缩和扭曲性能较低,加之纤维表面惰性强,与树脂的结合能力较差,在复 合材料成型过程中,有明显的界面层,从而影响也限制了 PBO 的应用。 芳香族聚酰胺纤维高结晶度、高取向度的分子结构,使其具有高强伸性能,也是由于大 分子链间弱的作用力 (范德华键),造成大分子链间剪切模量及压缩强度低。芳香族聚酰胺 纤维由氢键结合成的薄片状结构在受压缩载荷作用时易塑性变形, 薄片相对容易断开, 在严 重过载时会出现原纤化,最终导致压缩失效。 分子链间结合键以 M5 比较理想, M5 大分子间和大分子内的 N-H-O 和 O-H-N 的双向氢 在 键结构,是其具有高抗压性能的原因所在,热处理后的 M5 纤维,拉伸模量可达 360GPa,拉 伸强度超过 4GPa,剪切模量和抗压强度可达 7GPa 和 7GPa。此外 M5 而大分子链上含有羟 基,使它与树脂基体的粘结性能优良,采用 M5 纤维加工复合材料产品时,无需添加任何特 殊的粘合促进剂,且具有优良的耐冲击和耐破坏性。有资料显示,以 M5 为加固纤维的复合 材料,在压缩过载的情况下,测试样品仍能继续承受显著的(压缩)载荷,与之相比,碳纤复 合材料会粉碎,而芳香族聚酰胺复合材料则会被挤成纤丝状薄片(原纤化)。如图 5、图 6 分 别为一个碳纤维和一个 MS 纤维复合材料的失效测试条,显示了脆性与韧性失效之间的明显 差异。此外,M5 纤维的刚棒结构又决定了它有高的耐热性和高的热稳定性,空气中热分解 温度达到了 530℃,超过了芳香族聚酰胺纤维,与 PBO 接近,极限氧指数(LOI)为 59,在 阻燃性方面也优于芳纶。 图 5 碳纤维复合材料测试条的失败 图 6 M5 纤维料测试条的失败 表 1 为几种高性能纤维力学及物理特性。 表 1 高性能纤维的力学和物理特性 特性 高 强 度 超高强聚 高 模 量 芳 香 族 高 模 量 高模量 M5 纤 碳纤维 乙烯纤维 聚酰胺纤维 PBO 纤维 维(实验值) 抗拉强度(GPa) 伸长率(%) 拉伸模量(GPa) 压缩强度(GPa) 压缩应变(%) 密度(克/cm ) 标准回潮率(%) 限氧指数(LOI) 3 58 5 230 10 90 80 0 一 43 0 0 一 一 97 一 一 2 0 115 58 50 45 5 29 8 5 280 40 15 56 6 68 0 5 330 70 50 70 0 59 空气中热老化起 800 150 450 550 530 始温度(℃) 从表 1 看,M5 纤维的各种性能指标都接近或超过其它高性能纤维,为综合性能优良的 高性能纤维。 3 应用与前景 目前超高强聚乙烯纤维的应用主要是加工防弹用特种织物、防弹板、渔业用绳网、极低 温绝缘材料、混凝土补强加固用试验片材、光缆补强材料、降落伞绳带、汽车保险杠等。芳 香族聚酰胺纤维常见的品种 Kevlar、Twaron、Technora 纤维等,主要应用有作为复合材料 的增强体、渔业工业等用绳网、防弹服、防弹板、头盔、混凝土补强材料等。碳纤维的优良 特性使其广泛用于航空、航天、军工、体育休闲等结构材料,应用于宇宙机械、电波望远镜 和各种成型品,还有直升飞机的叶片、飞机刹车片和绝热材料、密封填料和滤材、电磁波屏 蔽材料、防静电材料、医学材料等。PBO 纤维从问世以来就受到人们的关注,其应用主要有 防冲击方面的加固补强材料、复合材料中的加固材料,用于防护的防弹服、防弹头盔、消防 服、高性能及耐高温传动带、轮胎帘子线、光纤电缆承载部分、架桥用缆绳、耐热垫材等。 与各种高性能纤维相比,M5 纤维的综合性能更优越,这使得它的应用领域更广泛。尤 其是 M5 纤维的抗冲击力和耐破坏性,使它在制造经济、高效的结构材料方面有广阔的应用 前景,如应用于航空航天等高科技领域,在高性能纤维增强复合材料中 M5 也具有很强的竞 争力。当前 M5 纤维的研究比较活跃,随着研究的深人,其性能和应用将得到不断的提高和 拓展。 高性能纤维的不断创新是高性能产业用纺织品及复合材料用纤维领域的重要进步, 随着 世界高新技术、纤维合成与纺丝工艺的发展,以及军事、航空航天、海洋开发、产业应用的 迫切需要,高性能纤维的开发与应用前景将更为广阔。新型高性能纤维M5的研究与应用摘要:本文介绍了一种新型液晶芳族杂环聚合物,聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)简述了M5纤维的制作方法,M5纤维特殊的分子结构特征,并通过与其它高性能纤维的比较,阐述了M5纤维优良的性能,特别是其良好的压缩与剪切特性除此之外,M5纤维的高极性还使其更容易与各种树脂基体粘接,这使M5纤维的综合机械性能比目前其它高性能纤维都好文中还展望了M5纤维的应用前景前言近年来,随着对有机高性能纤维的不断深入研究,在刚性高性能纤维领域已经取得了很大的进展但大多数高性能纤维,因分子间结合力的薄弱而导致某些力学性能上的不足,如PBO纤维大分子链间较弱的结合力,使其压缩和扭曲性能较差纤维材料的压缩性能,主要取决于纤维大分子之间的相互作用程度[1,2]通常纤维扭转模量可作维表征大分子之间相互作用程度的一个量度因此,如何增强大分子链之间的相互作用,已成为进一步强化刚性聚合物纤维力学性能的一个重要问题作为Akzo-Nobel实验室的研究成果,一种新型的高性能纤维,即著称的M5已经被研究出来聚合物是聚(2,5-二羟基-1,4-苯撑吡啶并二咪唑){poly[2,6-diimidazo(4,5-b:4',5'-e)pyridinylene-1,4(2,5-dihydroxy)phenylen],PIPD}纤维(简称M5)[3]由于M5纤维沿纤维径向即大分子之间存在特殊的氢键网络结构,所以M5纤维不仅具有类似PBO纤维的优异抗张性能,而且还显示出优于PBO纤维的抗压缩性能1高性能纤维M1 单体的选择及M5的合成[4]在M5聚合物的制备过程中,其关键步骤是单体2,3,5,6-四氨基吡啶(2,3,5,6-tertraaminopyridine,TAP))的合成TAP可由2,6-二氨基吡啶(2,6diaminopyridine,DAP)经硝化还原后制成,反应方程式如下所示:在M5的合成过程中,TAP需经盐酸化处理并以盐酸盐形式参与聚合反应若TAP直接以磷酸盐的形式参与反应,不但可以避免盐酸腐蚀作用,还可以加快聚合反应速度,但却易发生氧化作用另一单体2,5-二羟基对苯二甲酸(2,5-Dihydroxyterephthalicacid,DHTA)的合成也是制备M5聚合物的重要环节,可由2,5-二羟基对苯二甲酸二甲酯(2,5-dihydroxy-1,4-dimethylterephthalate,DDTA)水解后制得,反应方程式如下所示:M5纤维的聚合过程与聚对苯撑苯并二恶唑(poly(p-phenylenebenzobisoxazole),PBO)相似,可将TAP和DHTA两种单体按一定的等当比同时加入到聚合介质多聚磷酸(polyphosphoric acid,PPA)中,脱除HCI后逐渐升温至180℃,反应24h,得到M5聚合物,反应方程式如下所示:2 M5的分子结构特征及聚合物的聚集态结构1 M5的分子结构特征M5纤维在分子链的方向上存在着大量的-OH和-NH基团,容易在分子间和分子内形成强烈的氢键因此,其压缩和扭曲性能为目前所有聚合物纤维之最M5纤维的刚棒状分子结构特点决定了M5纤维具有较高的耐热性由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接图1热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图[5]图2热处理后PIPD单斜晶胞沿C轴的分子结构示意图[5]图1和图2都显示了热处理后PIPD纤维的微观二维结构,即在大分子间和大分子内分别形成了N-H-O和O-H-N的氢键结构,这种双向氢键的网络结构正是M5纤维具有高抗压缩性能的原因在图1 热处理后PIPD-HT单斜晶胞的双向氢键网络晶体结构示意图图2 热处理后PIPD单斜晶胞沿C轴的分子结构示意图2 M5的聚集态结构图3 PIPD-AS沿C轴方向的分子结构示意图如图3所示,为含有21%左右水分子的PIPD-AS纤维的结晶结构由于PIPD-AS纤维中存在着大量的水,因而使得PIPD-AS纤维有很大的质量热容,而且具有良好的耐燃性能表2和表3所列出的实验结果也证实了这一结论[16,19]如图4所示,为不同热处理温度的PIPD-AS纤维WAXD图[16]从图4可以看出,PIPD-AS纤维在热处理过程中晶体中的水分被脱出,变成无水聚合物晶体,从而在垂直于纤维方向的平面内形成二维氢键网状结构有实验表明,经过热处理后PIPD纤维的结晶度和取向度都有很大的提高图4 不同热处理温度的PIPD-AS纤维WAXD图Klop EA等[22]通过PIPD晶体结构的X射线衍射实验研究发现,因PIPD试样的处理温度不同,在PIPD的分子内部可出现不同形式的结晶结构—单斜结晶晶胞和三斜结晶晶胞(如图5和图6所示)单斜和三斜的晶胞参数分别为:单斜结晶: a=49 ,b=48 ,c=01 ,=90°,=107°,=90°三斜结晶:a=68 ,b=48 ,c=02 ,=84,=110°,=107°Takahashi等[20,21]采用中子方法测得的PIPD-HT晶胞参数为:a=33 ,b=462 ,c=16 ,=84°,=4°,空间结构为P21/,单斜晶胞区别于三斜晶胞的不同之处在于,三斜晶胞的氢键网络结构仅仅是靠沿对角线平面的大分子连接的,而单斜晶胞可在垂直于纤维方向的平面内形成了二维氢键网络结构,显然这种二维氢键网络结构,使得M5具有其它高性能纤维所无法比拟的高剪切强度,剪切模量和压缩强度图5 PIPD单斜晶胞在ab面和ac面上的投影 图6 PIPD三斜晶胞在ab面上的投影3 M5纤维的纺丝工艺[9,16]1 M5纤维的成形M5纤维的纺丝是将质量分数为18~20%左右的PIPD/PPA纺丝浆液(聚合物的MW为0×104~5×105)进行干喷湿纺,空气层的高度为5-15cm,纺丝温度为180℃,以水或多聚磷酸水溶液为凝固剂,可制成PIPD的初生纤维其中,实验用喷丝孔直径范围为65-200 m,喷头拉伸比取决于喷丝空的直径,可达70倍,所得纤维直径为8-14 所得M5的初生纤维需在热水中进行水洗,以除去附着在纤维表面的溶剂PPA,并进行干燥图7 M5纤维的热处理示意图2 M5纤维的热处理为了进一步提高初生纤维取向度和模量,对初生纤维在一定的预张力下进行热处理,如图7所示在这一过程中,M5纤维取向度将伴随着由其分子结构的改变引起的剪切模量的增加而增大对M5初生纤维进行热处理能够改善纤维的微观结构,从而提高纤维的综合性能M5初生纤维再进一步用热水洗涤除去残留的多聚磷酸水溶液(PPA)和干燥后,在氮气环境下于400℃以上进行大约20s的定张力热处理,最终可得到高强度,高模量的M5纤维在此需要特别指出的是,如果热处理温度过低或处理时间过短,则PIPD-AS和PIPD-HT的转变是可逆的因此,热处理温度与热处理时间对M5纤维的模量影响很大4 M5纤维的性能1 力学性能图8 PIPD-AS和PIPD-HT纤维的应力-应变曲线图如图8所示,热处理后的PIPD纤维同PIPD的初生纤维相比较,二者的力学性能截然不同,PIPD-AS纤维存在屈服,而PIPD-HT纤维不存在这种现象Lammwers M[18]等研究发现,经过200℃热处理的初生纤维压缩强度由原来的7Gpa提高到7Gpa,而经过400℃热处理的初生纤维压缩强度由原来的7Gpa提高到1G显然对于PIPD的初生纤维来讲,并非热处理温度越高越好通过用偏光显微镜观察发现:在400℃热处理的纤维中存在裂纹,这可能是导致压缩强度下降的原因,因此,热处理温度不宜太高表1[9-14]给出了几种高性能纤维的力学性能和其它性能的对比数据,其中的力学性能包括拉伸强度,断裂伸长,模量以及抗压缩强度等与其它3种纤维相比,M5的抗断裂强度稍低于PBO,远远高于芳纶(PPTA)和碳纤维,其断后延伸率为4%;与其它高性能纤维相比,M5纤维的模量是最高的,达到了350GPa;M5的压缩强度低于碳纤维,但却远远高于Twaron-HM纤维和PBO纤维,这归因于M5的二维分子结构[17]表1 M5纤维与其它高性能纤维的比较纤维拉伸强独/Gpa断裂伸长/%初始模量/ Gpa压缩强度/ Gpa压缩应变/ %密度/(-3)回潮率/%Twaron-HM5C-HS0PBO6M0纤维空气中的热稳定性/℃LOI/%电导性抗冲击性抗破坏性编制性能耐紫外性Twaron-HM45029-++++-C-HS800N/A++------++PBO55068-++N/A+/---M5530>50-+++++++M5纤维特殊的分子结构,使其除具有高强和高模外,还具有良好的压缩与剪切特性,剪切模量和压缩强度分别可达7GPa和6GPa,优于PBO纤维和芳香族聚酰胺纤维,在目前所有聚合物纤维中最高图9 M5纤维的轴向压缩SEM图一般来讲,当高性能纤维受到来自外界的轴向压缩力时,其纤维内部的分子链取向会因轴向压缩力的存在而发生改变,即沿着纤维轴向出现变形带结构而对M5纤维来讲只有当这种轴向压缩力很大时才会出现这种结构[11]如图9所示,当M5纤维受到外界的轴向压缩力时,压缩变形后的M5纤维中也会出现一条变形带结构,但与其它高性能纤维(如PBO)相比较,M5纤维的变形程度要小很多2 阻燃性能表2 PIPD-AS和PIPD-HT纤维耐燃性能的重要参数[5]试样PHRR①(kWm-2)TTI②(s)SEA③FPI④(sm2kW-1)残留量(%)PIPD-AS76061PIPD-HT89062PBO-HM17072T09811N08724PVC05515注:①热量释放最大速率(PHRR);②引燃时间(TTI);③比消光面积(SEA);④耐燃性能指数(FPI)表2所列数据是热量计热流为75kW/m2时测得的,也就是在试样表面温度为890℃左右时测得的值纤维试样放在一块1cm2的线网上试样原始重量在3g-5g之间从表2可以看出,PIPD-AS纤维热量释放最大速率(PHRR)为7kWm-2,也就是说单位时间内PIPD-AS释放出最小的热量,与其它高聚物相比是一种较好的阻燃剂用材料PIPD-AS纤维的点燃时间最长为77s,远高于Nomex纤维SEA是用来衡量单位物质燃烧时产生的烟雾量,PIPD-AS纤维达到了224m3/kg,而Nomex纤维为38670m3/kg,二者相比PIPD-AS纤维的SEA值远低于Nomex纤维,说明PIPD-AS纤维燃烧时产生的烟雾量要远少于Nomex纤维同表2中的其它高聚物相比,PIPD-AS纤维的耐燃性能指数(FPI)最高为76sm2kW-从表2中各项耐燃性能参数可以看出PIPD纤维在耐燃性方面,要好于其它高性能纤维,即PIPD纤维在耐燃性方面将具有较好多应用前景M5纤维的刚棒状分子结构决定了它具有较高的耐热性和热稳定性从表2中可以看出,PIPD-HT纤维具有与聚对苯亚基苯并双嗯哇(PBO)纤维相似的FPI值,但它在燃烧过程中更不容易产生烟M5在空气中的热分解温度为530℃,超过了芳香族聚酰胺纤维,与PBO纤维接近M5纤维的极限氧指数(LOI)值超过50,不熔融,不燃烧,具有良好的耐热性和稳定性[7]3 界面粘合性能与PBO,聚乙烯或芳香族聚酰胺纤维相比,由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接采用M5纤维加工复合材料产品时,无需添加任何特殊的粘合促进剂M5纤维在与各种环氧树脂,不饱和聚酯和乙烯基树脂复合成形过程中,不会出现界面层,且具有优良的耐冲击和耐破坏性[6,8]4 热力学性能图10 四种不同含水量M5纤维的DSC扫描图图10为MGNoRTHoLIT[19]等用SetaramC80D热量计测得的四种不同含水量M5纤维的DSC谱图研究发现将1g试样材料放在一个开放的测试槽内,以2℃/min的速度,在30℃-200℃范围内得到一张扫描图,如图5所示从DSC谱图可以看出,四种不同含水量M5纤维的吸热峰面积及位置与开放测试槽内水分的蒸发有关从表3可以看出,含有结晶水的M5初生纤维的热吸收值与不含结晶水的M5纤维的热吸收值之间存在着较大的差别,而PIPD初生纤维和PIPD HT试样的热吸收值之间几乎没有什么差别通过以上研究发现完全干燥的PIPD初生纤维的晶体结构与PIPD-HT试样结构类似表3 不同含水量的PIPD纤维的热吸收值试样热吸收值(J/g)PIPD初生纤维(含水量20%)637PIPD初生纤维(干燥)163PIPD HT(含水量7%)378PIPD HT(干燥)1855 应用及展望作为一种先进复合材料的增强材料,M5纤维具有许多其它有机高性能纤维不具备的特性,这使得M5纤维在许多尖端科研领域具有更加广阔的应用前景;M5纤维可用于航空航天等高科技领域;用于国防领域如制造防弹材料;用于制造运动器材如网球拍,赛艇等M5纤维特殊的分子结构决定了其具有许多高性能纤维所无法比拟的优良的力学性能和粘合性能,使它在高性能纤维增强复合材料领域中具有很强的竞争力与碳纤维相比,M5纤维不仅具有与其相似的力学性能,而且M5纤维还具有碳纤维所不具有的高电阻特性,这使得M5纤维可在碳纤维不太适用的领域发挥作用,如电子行业由于M5大分子链上含有羟基,M5纤维的高极性使其能更容易与各种树脂基体粘接正是由于M5纤维具有许多其他高性能纤维所无法比拟的性能和更加广阔的应用前景,这使得众多的科研工作者都积极地致力于M5纤维的研究相信在不久的将来,随着对M5纤维研究的进一步深入,作为新一代的有机高性能纤维—M5纤维必将得更加广泛的应用

碳纤维制备文献

工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维、沥青基碳纤维和粘胶基碳纤维三大类,但主要生产前两种碳纤维。由粘胶纤维制取高力学性能的碳纤维必须经高温拉伸石墨化,碳化收率低,技术难度大,设备复杂,原料丰富碳化收率高,但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝制得的高性能碳纤维,其生产工艺较其他方法简单,产量约占全球碳纤维总产量的90%以上。 碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得。应用较普遍的碳纤维主要是聚丙烯腈碳纤维和沥青碳纤维。碳纤维的制造包括纤维纺丝、热稳定化(预氧化)、碳化、石墨化等4个过程。其间伴随的化学变化包括,脱氢、环化、预氧化、氧化及脱氧等。 从粘胶纤维制取高力学性能的碳纤维必须经高温拉伸石墨化,碳化收率低,技术难度大、设备复杂,产品主要为耐烧蚀材料及隔热材料所用;由沥青制取碳纤维,原料来源丰富,碳化收率高,但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单力学性能优良,自20世纪60年代后在碳纤维工业发展良好。 聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。 原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。 碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕等工序。 PAN基碳纤维的制备聚丙烯腈碳纤维是以聚丙烯腈纤维为原料制成的碳纤维,主要作复合材料用增强体。无论均聚或共聚的聚丙烯腈纤维都能制备出碳纤维。为了制造出高性能碳纤维并提高生产率,工业上常采用共聚聚丙烯腈纤维为原料。对原料的要求是:杂质、缺陷少;细度均匀,并越细越好;强度高,毛丝少;纤维中链状分子沿纤维轴取向度越高越好,通常大于80%;热转化性能好。 生产中制取聚丙烯腈纤维的过程是:先由丙烯腈和其他少量第二、第三单体(丙烯酸甲醋、甲叉丁二脂等)共聚生成共聚聚丙烯腈树脂(分子量高于 6到8万),然后树脂经溶剂(硫氰酸钠、二甲基亚矾、硝酸和氯化锌等)溶解,形成粘度适宜的纺丝液,经湿法、干法或干湿法进行纺丝,再经水洗、牵伸、干燥和热定型即制成聚丙烯腈纤维。若将聚丙烯腈纤维直接加热易熔化,不能保持其原来的纤维状态。制备碳纤维时,首先要将聚丙烯腈纤维放在空气中或其他氧化性气氛中进行低温热处理,即预氧化处理。预氧化处理是纤维碳化的预备阶段。一般将纤维在空气下加热至约270℃,保温5h到3h,聚丙烯腈纤维的颜色由白色逐渐变成黄色、棕色,最后形成黑色的预氧化纤维。是聚丙烯腈线性高分子受热氧化后,发生氧化、热解、交联、环化等一系列化学反应形成耐热梯型高分子的结果。再将预氧化纤维在氮气中进行高温处理1600℃的碳化处理,则纤维进一步产生交联环化、芳构化及缩聚等反应,并脱除氢、氮、氧原子,最后形成二维碳环平面网状结构和层片粗糙平行的乱层石墨结构的碳纤维。 由PAN原丝制备碳纤维的工艺流程如下:PAN原丝→预氧化→碳化→石墨化→表面处理→卷取→碳纤维。 第一、原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。作为烧蚀材料用的粘胶基碳纤维,其原丝要求不含碱金属离子。 第二、预氧化(聚丙烯腈纤维200到300℃)、不融化(沥青200到400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。 第三、碳化,其温度为:聚丙烯腈纤维1000到1500℃,沥青1500到1700℃,粘胶纤维400到2000℃。 第四、石墨化,聚丙烯腈纤维为2500到3000℃,沥青2500到2800℃,粘胶纤维3000到3200℃。 第五、表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。 第六、上浆处理,防止纤维损伤,提高与树脂母体的亲和性。所得纤维具有各种不同的断面结构。 世界碳纤维产量达到每年4万吨以上,全世界主要是日本美国德国以及韩国等少数国家掌握了碳纤维生产的核心技术,并且有规模化大生产。当前,全球碳纤维核心技术被牢牢掌控在少数发达国家手中。一方面,以美日为首的发达国家始终保持着对中国碳纤维行业严格的技术封锁;另一方面,国外碳纤维行业领先企业开始进入中国市场,中国本土碳纤维企业的压力大增。虽然中国加大了对碳纤维行业的引导和扶持力度,但在较大的技术差距下,国产碳纤维的突围之路仍然坎坷。 中国对碳纤维的研究开始于20世纪60年代,80年代开始研究高强型碳纤维。多年来进展缓慢,但也取得了一定成绩。进入21世纪以来发展较快,安徽率先引进了500吨每年原丝、200吨每年PAN基碳纤维,使中国碳纤维工业进入了产业化。随后一些地方相继加入碳纤维生产行列。从2000年开始中国碳纤维向技术多元化发展,放弃了原来的硝酸法原丝制造技术,采用以二甲基亚砜为溶剂的一步法湿法纺丝技术获得成功。利用自主技术研制的少数国产T700碳纤维产品已经达到国际同类产品水平。随着中国对碳纤维的需求量日益增长,碳纤维已被列为国家化纤行业重点扶持。2005年全球碳纤维市场仅为9亿美元,而2013年达到100亿美元,预计到2022年有望达到400亿美元,碳纤维复合材料的应用也将进入全新的时代。中国碳纤维产业化采取自主开发和引进相结合的道路,到“十一五“末期基本实现了相当于日本T300的国产碳纤维规模生产线,并且有一些企业已形成了T700以上水平的百吨生产线。2011年中国碳纤维市场规模达到6811吨,然而,受供应不足的影响,国内碳纤维市场发展相对较为缓慢,预计未来几年,随着供应量的提升,中国碳纤维行业的需求量也将保持着较快速度的增长。 技术的落后直接导致中国碳纤维产品质量与进口产品之间的明显差距,也极大地限制了国产碳纤维产品在高端领域的应用。有数据显示,中国碳纤维产品在应用上集中于低端领域,在碳纤维质量要求较高的航空航天领域的应用比例仅为3%,远远没达到国际上碳纤维行业在航空航天领域应用占比的平均水平;而在质量要求相对较低的运动休闲用品领域,碳纤维的应用比例却高达80%左右,四倍于国际上碳纤维在运动休闲用品领域应用的平均水平。但国产碳纤维落后的技术却制约着中国碳纤维行业健康稳健发展。中国高性能碳纤维都依赖进口,日本的碳纤维产量更是占全球市场份额的60%。2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。

嫘萦系碳纤维嫘萦纤维素纤维加热处理时不会熔融,若在无氧状态下的不活性气体(Inert Gas)中加热处理,则极易取得碳纤维。聚丙烯腈系碳纤维聚丙烯腈(PAN)系碳纤维之制造工程大致可分为聚丙烯腈纤维之制备;安定化工程(耐炎化);碳化工程;表面处理与上浆工程;石墨化工程等五个程序。沥青系碳纤维原油经900℃以上之高温提炼后的残渣中,约含有95wt%之碳质,若以电解法去除其中之硫酸,再经水洗后可得纯度极佳之沥青(Pitch)。气相成长碳纤维气相成长碳纤维有基材上成长法与流体化触媒成长法两种。将铁、钴、镍等金属微粒(M)加热至1100℃,令乙炔(C2H2)热分解脱氢形成碳素沈积成长于金属微粒下方,形成碳纤维。为基材上成长法之简图,可知其间须喂入氢(H2)气与苯(C6H6)等气体。活性碳纤维目前商业化之活性碳的形态有粉末状;颗粒状与纤维状等三种,其中粉末状活性碳(Powdered Activated Carbon,简称PAC),大多由木屑制成,平均尺寸约为15~25μm;颗粒状活性碳(Granular Activated Carbon,简称GAC),大致由煤、沥青粉末制成,平均尺寸约为4~6㎜;纤维状活性碳(Activated Carbon Fiber,简称ACF),则大多由PAN、Rayon、Pitch与Phenolic Resin等纤维制成,平均直径约为7~15μm。活性碳纤维之吸着性活性碳纤维之特性,其吸着性依原料不同有所差异,其中以日本等国开发之Phenolic Resin系之效果较佳。在溶剂吸着之过程中,首先是表面质传,再于孔洞内扩散,接着活性真吸附与多层吸附,最后形成毛细凝结,故活性碳纤维为一种优良之溶剂吸着材,甚至回收利用。同时对于空气净化、脱色、脱臭、医疗用卫生、防毒面具/口罩、电子材与各项污染防止过滤材等用途皆可广泛利用。

相关百科

热门百科

首页
发表服务