首页

> 论文期刊知识库

首页 论文期刊知识库 问题

自然光子学期刊

发布时间:

自然光子学期刊

本期《自然》《科学》精选本期《自然》《科学》精选 【字体:大 中 小】 时间:2009年4月3日0 来源:生物通------------------------------------------------------------------------------------------------------------------------------------ 摘要: 4月2日Nature封面故事:天然气田封存CO2的机制 减小人为产生CO2对气候影响的多种选择方案之一是,将来自发电厂和其他工业源头的排放物埋掉。但埋藏方法有多安全、效率有多高?一个埋藏地点的设计及长期可行性关键取决于CO2是怎样存放的和在哪里存放的。天然气田能在千年时间尺度上对人为产生的CO2进行安全的地质存放,而现在,利用惰性气体和碳同位素示踪剂所做的一项研究,对在北美、中国和欧洲九个天然气田的CO2清除中所涉及的过程完成了定性。该研究发现,居主导地位的CO2汇是地层水中的溶解,而碳酸盐矿中的固定作用只扮演一个小角色。这表明,CO2废弃物在类似地质系统中的长期存放模型需要将水中所溶CO2的潜在流动性考虑进去。针对HIV的多种记忆抗体血清记忆(Serologic memory)是长期免疫效能的一个重要因素,但我们对由被HIV等重要人类病原体感染的人体中记忆B细胞所产生的抗体却几乎不了解。为了对HIV的记忆抗体反应进行研究,Scheid等人从来自具有高血清值的广谱中和抗体的6个HIV感染者的HIV-特异性记忆B细胞中克隆出了超过500个抗体。这些患者体内B细胞对HIV的记忆反应由多达50个独立的、扩展的B-克隆组成,这些B-克隆表达一组针对不同病毒表位(抗原决定部位)的不同抗体,其中几个对于广谱HIV中和及有效免疫可能有重要作用。HK97原壳体的高分辨率结构“Lamda-like dsDNA噬菌体”HK97,是研究病毒衣壳成熟过程的一个有利体系,因为它在大肠杆菌中从仅仅两个病毒基因产物的表达中就可以组装成,并且其成熟过程可以很容易在体外触发和分析。研究人员已经确定了不同的成熟病毒衣壳的结构,但此前尚未获得噬菌体的双链DNA病毒的原壳体。现在,Gertsman等人报告了HK97原壳体的高分辨率结构,从而为导致感染性病毒颗粒(virion)的衣壳组装过程提供了线索。从这一结构中获得的知识对于如人疱疹病毒等相关病毒的研究也有参照性。3D信息在大脑中的处理方式大脑在编码深度(或3D)信息时为什么不会将其与环境中的其他视觉提示混淆?采用双目看东西的动物对深度的感觉,是通过对比每只眼睛所接收到的图像之间的差别来实现的。视觉皮层中的一些神经元会对这种偏差做出反应,而其他神经元则对来自一只眼睛或另一只眼睛的输入信号有偏好(这种现象称之为“眼优势”)。采用双光子钙成像,Prakash Kara 和Jamie Boyd得以能够对猫视觉皮层一个小区域中几乎每个神经元的反应进行比对,他们发现,对“眼优势”和双目偏差的反应存在于大脑内确定的轴上:编码3D信息的功能图与给出到达每只眼睛的视觉输入的相对强度信号的另一个功能图成直角排列。 这两个功能图的相对排列方式,为了解大脑中的局部回路何以能够同时地、无缝地处理环境中的多种感官特征提供了重要线索。大脑为什么能同时记住多个目标的不同细节虽然我们能够在工作视觉记忆中记住几个不同目标,但我们是怎样记住每个目标的特定细节及视觉特征的仍是一个谜。对工作记忆负责的高级区域中的神经元似乎对视觉细节并没有选择性,大脑皮层的早期视觉区域具有能够处理来自眼睛的输入视觉信号的独特能力,但过去人们认为它不能执行如记忆等高级认知功能。Stephanie Harrison 和 Frank Tong等人,利用对来自功能性核磁共振成像(fMRI)的数据进行解码的一种新方法,发现早期视觉区域能够保持关于存放在工作记忆中的相关特征的特定信息。研究人员向志愿者出示了两个不同取向的条纹图案,要他们在被fMRI扫描时记住其中一个取向。从对扫描结果所做的分析,研究人员有可能预测,在两个取向的图案中的哪一个中,一个目标在超过80%的测试中都会被保留。4月3日Science人类会长出新的心肌细胞据4月3日的《科学》杂志报道说,一个长期存在的问题,即我们在一生中是否能够产生新的心脏细胞或我们在出生的时候就拥有了固定数量的心肌细胞现在终于得到了解答。 Olaf Bergmann及其同僚利用大气中的放射性污染发现,在人的生长过程中,人类实际上确实会再生一些心脏细胞(或称心肌细胞)。 由于大气中的碳-14水平在1950年代因为进行地面上核弹爆炸而增加,这导致了地球上所有生物的细胞中的该种同位素的水平都可能增加。 当地上核试验被禁止之后,我们的DNA中的碳-14水平开始慢慢地下降。因此,研究人员能够用该同位素作为一种细胞出生时的日期标记。 研究人员用碳来标记在核试验前后的不同时期出生的人的心脏细胞以建立在这些细胞中DNA合成时的年代。 他们的结果表明,心肌细胞确实会在我们一生的过程中缓慢地更新,而其更新率在缓慢地下降,即在25岁时,心肌的年度更新率为1%,而到75岁的时候,该更新率下降至45%。 研究人员测定,在这些心肌细胞中,那些在人的正常的一生中被更新的细胞不到50%。 这一发现提示,人们有必要研究刺激心肌更新过程的治疗策略以治疗损害的人类心脏细胞。 在一则相关的Perspective中,Charles Murry 和 Richard Lee对这一发现进行了更为详细的解释。应用生物学原理来安全制备电池据4月3日的《科学》杂志报道说,本周的《科学》期刊中有一则经过同行审议的有关新电池技术的描述。这一话题最近在2009年3月23日在白宫被重点介绍过。这一重要的研究对结合应用化学和生物系统来创制对环境友善的高功率锂离子电池进行了描述。Yun Jung Lee及其同僚研发了一种技术:将M13病毒进行基因编程,使其能够作为一种脚手架。人们可以在其上搭建可用于高功率电池的高度导电的电极。这种用遗传工程所设计的病毒可以沿着其表面长出无定形磷酸铁。这种材料一般来说并非良好的导体,但它在纳米尺度的情况下则成为一种有用的电池材料。这些病毒的末端被设计成与碳纳米管联结,从而形成一种可在电池内增进导电性能的网络结构。研究人员观察到,那些克隆出的对碳纳米管具有最强亲和力的病毒可以使磷酸铁的充放电率与最尖端的(但也更为昂贵并具有毒性)结晶状磷酸锂铁电极相媲美Lee及其同僚通过应用基本的生物原理发现了一种对生态友善、在低温下能够将低导电性的物质转变为有效电极的脚手架。将来,这些电极也许可以用于便携式电子装置和混合动力电气汽车的高功率电池中。机器人能够像科学家那样进行思考吗?据4月3日的《科学》杂志报道说,机器人也许至少可以在实验室中在某种程度上取代研究人员。 这是本期《科学》杂志的2篇报告所得出的结论。这2篇报告都预想着机器人能与科学家共同工作,而非同时取代他们。 Ross King及其同僚创建了一个取名叫ADAM的机器人,它不但能够做酵母菌代谢的试验(无需或很少需要人对该实验进行干预),而且它还能对那些实验的结果进行思考并计划下一步要做的实验。 设计该机器人的目的是为了填补那些未知酵素的空白,人们需要用这些酶来进行代谢和基因组学的生物化学及生物资讯学的有关描述。 文章的作者证实,ADAM确实发现了那些在酵母菌代谢中具有功能的各种酶。在第2项研究中,Michael Schmidt和Hod Lipson运用一种运算法则(它本身并非建立在物理学、运动学或几何学的知识基础之上)来搜寻可解释诸如钟摆运动等物理系统行为的数学公式。 但是,科学家们仍然需要介入并识别那些以数学形式所表述的物理定律并对其含义进行解释。 一则相关的Perspective对这两项研究进行了讨论。 覆盖我们的恐惧感据4月3日的《科学》杂志报道说,最近在大鼠中所取得的覆盖其恐惧记忆的成功可能在某一天能够将这种方法与当前的治疗手段结合起来,帮助人们克服他们的恐惧,而且无需使用药物或创伤性的手术。 Marie Monfils及其同僚发现,在大鼠回忆恐惧的记忆之后不久运用一种标准的“削弱”疗法(这种疗法有时也用在病人身上)可以有覆盖原先的恐惧性记忆的效果。 研究人员开展了一系列的试验。在这些试验中,他们通过发出某种声调并在此后对大鼠施予电击来诱导大鼠的恐惧。 此后,该音调的出现就会使大鼠回忆起对电击的恐惧的联想。 研究人员注意到,尽管音调和电击的恐惧联想在大鼠的脑子中仍然记忆犹新,但当人们发出很长系列的音调但又不给予电击时可以有效地动摇大鼠的恐惧记忆,并将其代之于一种良性的记忆。 用这种技术治疗过的大鼠显示了较低的对声音本身所诱导的恐惧程度,而且它们原先的恐惧记忆自动重现的机率也较小。 这种技术似乎能够永久性地覆盖恐惧记忆,而且无需使用药物。 在未来的某一天,也许可以将这种技术用在人的身上来治疗精神性的疾病并克服我们的恐惧性联想。

科学 和自然是两个专业权威杂志 只是各个的戴白领域不同 国内应该可以订购 不过看的懂不懂是个问题 因为都很专业化 可以去邮局查找订阅编号

多节点量子网络取得基础性突破 。中科院院士、中国科学技术大学教授潘建伟、教授包小辉等人研究量子网络取得重要进展,成功地利用多光子干涉将分离的3个冷原子量子存储器纠缠起来,为构建多节点、远距离的量子网络奠定了基础。国际权威学术期刊《自然·光子学》日前发表了该成果,审稿人认为这是“多节点量子网络研究的里程碑”。与现有的电子计算机网络相对应,量子网络指的是远程量子处理器间的互联互通,按发展程度可分为量子密钥网络、量子存储网络、量子计算网络三个阶段。由于量子网络的重要应用价值,国际科技竞争非常激烈。目前量子密钥网络已较为成熟,正在进入规模化应用,如我国已经建成的量子保密通信“京沪干线”。在下一阶段的量子存储网络方面,当前的主要科研目标是拓展节点数目、增加节点间距离。构建量子存储网络的基本资源是光与原子间的量子纠缠,纠缠的亮度及品质决定了量子网络的尺度与规模。以高亮度光与原子纠缠为基础,研究人员通过制备多对纠缠,用3光子干涉成功地将3个原子系综量子存储器纠缠起来。实验中的3个量子存储器位于两间独立的实验室里,二者之间由18米的单模光纤相连。研究人员介绍,结合相关新型存储和纠缠技术,他们未来有望进一步增加节点数目;采用量子频率转换技术将原子波长转换至通信波段,也有望大幅扩展节点间的距离。扩展资料:量子纠缠量子理论研究者很早就发现了开启量子通讯的钥匙——量子纠缠。量子纠缠描述了这样一个现象:两个微观粒子位于宇宙空间中的两边,无论相隔多远,只要这两个粒子彼此处于量子纠缠,则通过改变一个粒子的量子状态,就可以使非常遥远的另一个粒子状态也发生改变,信号超越了时空的阻隔,直接送达了另一个粒子那里。这种神奇的现象和我们生活中所说的“心灵感应”很类似,两个相距遥远的人不约而同地想去做同一件事,好像有一根无形的线绳牵着两个人。这种理论上的超过通讯方式激起了量子科学家们的雄心壮志,他们试图建立起比现在的互联网快千万倍的量子网络。参考资料来源:新华网-我国学者研究“多节点量子网络”取得基础性突破

《自然光子学》的核心团队之所以设在东京,是因为日本及相邻亚洲地区企业及学术机构在光子学领域的研究力量在迅速发展。基于类似的原因,我们为在东京出版的《自然纳米技术》杂志(Nature Nanotechnology)(2006年10月创刊)任命了一位讲汉语的编辑和一位讲日语的顾问编辑。《自然光子学》和《自然纳米技术》的编辑们正在与整个亚太地区的研究人员建立联系,鼓励他们向其刊物投稿一流研究论文;让亚太地区更多研究人员参与投到他们刊物的文章的审稿工作;同时去发现在当地刊物上所发表的及在当地会议上所提交的一些最好的研究工作,以便在《自然光子学》和《自然纳米技术》上介绍其主要内容。

自然光子学期刊介绍

外星人在何处怎样投稿?

存放着机密文件的保险箱被放入一个特殊装置之后,可以突然消失,并且同一瞬间出现在相距遥远的另一个特定装置中,被人方便地取出。记者从中国科学技术大学获悉,日前,由中国科大和清华大学组成的联合小组在量子态隐形传输技术上取得的新突破,可能使这种以往只能出现在科幻电影中的“超时空穿越”神奇场景变为现实。据联合小组研究成员彭承志教授介绍,作为未来量子通信网络的核心要素,量子态隐形传输是一种全新的通信方式,它传输的不再是经典信息,而是量子态携带的量子信息。“在经典状态下,一个个独立的光子各自携带信息,通过发送和接收装置进行信息传递。但是在量子状态下,两个纠缠的光子互为一组,互相关联,并且可以在一个地方神秘消失,不需要任何载体的携带,又在另一个地方瞬间神秘出现。量子态隐形传输利用的就是量子的这种特性,我们首先把一对携带着信息的纠缠的光子进行拆分,将其中一个光子发送到特定位置,这时,两地之间只需要知道其中一个光子的即时状态,就能准确推测另外一个光子的状态,从而实现类似‘超时空穿越’的通信方式。据介绍,量子态隐形传输一直是学术界和公众的关注焦点。1997年,奥地利蔡林格小组在室内首次完成了量子态隐形传输的原理性实验验证。2004年,该小组利用多瑙河底的光纤信道,成功地将量子“超时空穿越”距离提高到600米。但由于光纤信道中的损耗和环境的干扰,量子态隐形传输的距离难以大幅度提高。2004年,中国科大潘建伟、彭承志等研究人员开始探索在自由空间实现更远距离的量子通信。在自由空间,环境对光量子态的干扰效应极小,而光子一旦穿透大气层进入外层空间,其损耗更是接近于零,这使得自由空间信道比光纤信道在远距离传输方面更具优势。据悉,该小组早在2005年就在合肥创造了13公里的自由空间双向量子纠缠“拆分”、发送的世界纪录,同时验证了在外层空间与地球之间分发纠缠光子的可行性。2007年开始,中国科大——清华大学联合研究小组在北京架设了长达16公里的自由空间量子信道,并取得了一系列关键技术突破,最终在2009年成功实现了世界上最远距离的量子态隐形传输,证实了量子态隐形传输穿越大气层的可行性,为未来基于卫星中继的全球化量子通信网奠定了可靠基础。据悉,该成果已经发表在6月1日出版的英国《自然》杂志子刊《自然光子学》上,并引起了国际学术界的广泛关注。

本期《自然》《科学》精选本期《自然》《科学》精选 【字体:大 中 小】 时间:2009年4月3日0 来源:生物通------------------------------------------------------------------------------------------------------------------------------------ 摘要: 4月2日Nature封面故事:天然气田封存CO2的机制 减小人为产生CO2对气候影响的多种选择方案之一是,将来自发电厂和其他工业源头的排放物埋掉。但埋藏方法有多安全、效率有多高?一个埋藏地点的设计及长期可行性关键取决于CO2是怎样存放的和在哪里存放的。天然气田能在千年时间尺度上对人为产生的CO2进行安全的地质存放,而现在,利用惰性气体和碳同位素示踪剂所做的一项研究,对在北美、中国和欧洲九个天然气田的CO2清除中所涉及的过程完成了定性。该研究发现,居主导地位的CO2汇是地层水中的溶解,而碳酸盐矿中的固定作用只扮演一个小角色。这表明,CO2废弃物在类似地质系统中的长期存放模型需要将水中所溶CO2的潜在流动性考虑进去。针对HIV的多种记忆抗体血清记忆(Serologic memory)是长期免疫效能的一个重要因素,但我们对由被HIV等重要人类病原体感染的人体中记忆B细胞所产生的抗体却几乎不了解。为了对HIV的记忆抗体反应进行研究,Scheid等人从来自具有高血清值的广谱中和抗体的6个HIV感染者的HIV-特异性记忆B细胞中克隆出了超过500个抗体。这些患者体内B细胞对HIV的记忆反应由多达50个独立的、扩展的B-克隆组成,这些B-克隆表达一组针对不同病毒表位(抗原决定部位)的不同抗体,其中几个对于广谱HIV中和及有效免疫可能有重要作用。HK97原壳体的高分辨率结构“Lamda-like dsDNA噬菌体”HK97,是研究病毒衣壳成熟过程的一个有利体系,因为它在大肠杆菌中从仅仅两个病毒基因产物的表达中就可以组装成,并且其成熟过程可以很容易在体外触发和分析。研究人员已经确定了不同的成熟病毒衣壳的结构,但此前尚未获得噬菌体的双链DNA病毒的原壳体。现在,Gertsman等人报告了HK97原壳体的高分辨率结构,从而为导致感染性病毒颗粒(virion)的衣壳组装过程提供了线索。从这一结构中获得的知识对于如人疱疹病毒等相关病毒的研究也有参照性。3D信息在大脑中的处理方式大脑在编码深度(或3D)信息时为什么不会将其与环境中的其他视觉提示混淆?采用双目看东西的动物对深度的感觉,是通过对比每只眼睛所接收到的图像之间的差别来实现的。视觉皮层中的一些神经元会对这种偏差做出反应,而其他神经元则对来自一只眼睛或另一只眼睛的输入信号有偏好(这种现象称之为“眼优势”)。采用双光子钙成像,Prakash Kara 和Jamie Boyd得以能够对猫视觉皮层一个小区域中几乎每个神经元的反应进行比对,他们发现,对“眼优势”和双目偏差的反应存在于大脑内确定的轴上:编码3D信息的功能图与给出到达每只眼睛的视觉输入的相对强度信号的另一个功能图成直角排列。 这两个功能图的相对排列方式,为了解大脑中的局部回路何以能够同时地、无缝地处理环境中的多种感官特征提供了重要线索。大脑为什么能同时记住多个目标的不同细节虽然我们能够在工作视觉记忆中记住几个不同目标,但我们是怎样记住每个目标的特定细节及视觉特征的仍是一个谜。对工作记忆负责的高级区域中的神经元似乎对视觉细节并没有选择性,大脑皮层的早期视觉区域具有能够处理来自眼睛的输入视觉信号的独特能力,但过去人们认为它不能执行如记忆等高级认知功能。Stephanie Harrison 和 Frank Tong等人,利用对来自功能性核磁共振成像(fMRI)的数据进行解码的一种新方法,发现早期视觉区域能够保持关于存放在工作记忆中的相关特征的特定信息。研究人员向志愿者出示了两个不同取向的条纹图案,要他们在被fMRI扫描时记住其中一个取向。从对扫描结果所做的分析,研究人员有可能预测,在两个取向的图案中的哪一个中,一个目标在超过80%的测试中都会被保留。4月3日Science人类会长出新的心肌细胞据4月3日的《科学》杂志报道说,一个长期存在的问题,即我们在一生中是否能够产生新的心脏细胞或我们在出生的时候就拥有了固定数量的心肌细胞现在终于得到了解答。 Olaf Bergmann及其同僚利用大气中的放射性污染发现,在人的生长过程中,人类实际上确实会再生一些心脏细胞(或称心肌细胞)。 由于大气中的碳-14水平在1950年代因为进行地面上核弹爆炸而增加,这导致了地球上所有生物的细胞中的该种同位素的水平都可能增加。 当地上核试验被禁止之后,我们的DNA中的碳-14水平开始慢慢地下降。因此,研究人员能够用该同位素作为一种细胞出生时的日期标记。 研究人员用碳来标记在核试验前后的不同时期出生的人的心脏细胞以建立在这些细胞中DNA合成时的年代。 他们的结果表明,心肌细胞确实会在我们一生的过程中缓慢地更新,而其更新率在缓慢地下降,即在25岁时,心肌的年度更新率为1%,而到75岁的时候,该更新率下降至45%。 研究人员测定,在这些心肌细胞中,那些在人的正常的一生中被更新的细胞不到50%。 这一发现提示,人们有必要研究刺激心肌更新过程的治疗策略以治疗损害的人类心脏细胞。 在一则相关的Perspective中,Charles Murry 和 Richard Lee对这一发现进行了更为详细的解释。应用生物学原理来安全制备电池据4月3日的《科学》杂志报道说,本周的《科学》期刊中有一则经过同行审议的有关新电池技术的描述。这一话题最近在2009年3月23日在白宫被重点介绍过。这一重要的研究对结合应用化学和生物系统来创制对环境友善的高功率锂离子电池进行了描述。Yun Jung Lee及其同僚研发了一种技术:将M13病毒进行基因编程,使其能够作为一种脚手架。人们可以在其上搭建可用于高功率电池的高度导电的电极。这种用遗传工程所设计的病毒可以沿着其表面长出无定形磷酸铁。这种材料一般来说并非良好的导体,但它在纳米尺度的情况下则成为一种有用的电池材料。这些病毒的末端被设计成与碳纳米管联结,从而形成一种可在电池内增进导电性能的网络结构。研究人员观察到,那些克隆出的对碳纳米管具有最强亲和力的病毒可以使磷酸铁的充放电率与最尖端的(但也更为昂贵并具有毒性)结晶状磷酸锂铁电极相媲美Lee及其同僚通过应用基本的生物原理发现了一种对生态友善、在低温下能够将低导电性的物质转变为有效电极的脚手架。将来,这些电极也许可以用于便携式电子装置和混合动力电气汽车的高功率电池中。机器人能够像科学家那样进行思考吗?据4月3日的《科学》杂志报道说,机器人也许至少可以在实验室中在某种程度上取代研究人员。 这是本期《科学》杂志的2篇报告所得出的结论。这2篇报告都预想着机器人能与科学家共同工作,而非同时取代他们。 Ross King及其同僚创建了一个取名叫ADAM的机器人,它不但能够做酵母菌代谢的试验(无需或很少需要人对该实验进行干预),而且它还能对那些实验的结果进行思考并计划下一步要做的实验。 设计该机器人的目的是为了填补那些未知酵素的空白,人们需要用这些酶来进行代谢和基因组学的生物化学及生物资讯学的有关描述。 文章的作者证实,ADAM确实发现了那些在酵母菌代谢中具有功能的各种酶。在第2项研究中,Michael Schmidt和Hod Lipson运用一种运算法则(它本身并非建立在物理学、运动学或几何学的知识基础之上)来搜寻可解释诸如钟摆运动等物理系统行为的数学公式。 但是,科学家们仍然需要介入并识别那些以数学形式所表述的物理定律并对其含义进行解释。 一则相关的Perspective对这两项研究进行了讨论。 覆盖我们的恐惧感据4月3日的《科学》杂志报道说,最近在大鼠中所取得的覆盖其恐惧记忆的成功可能在某一天能够将这种方法与当前的治疗手段结合起来,帮助人们克服他们的恐惧,而且无需使用药物或创伤性的手术。 Marie Monfils及其同僚发现,在大鼠回忆恐惧的记忆之后不久运用一种标准的“削弱”疗法(这种疗法有时也用在病人身上)可以有覆盖原先的恐惧性记忆的效果。 研究人员开展了一系列的试验。在这些试验中,他们通过发出某种声调并在此后对大鼠施予电击来诱导大鼠的恐惧。 此后,该音调的出现就会使大鼠回忆起对电击的恐惧的联想。 研究人员注意到,尽管音调和电击的恐惧联想在大鼠的脑子中仍然记忆犹新,但当人们发出很长系列的音调但又不给予电击时可以有效地动摇大鼠的恐惧记忆,并将其代之于一种良性的记忆。 用这种技术治疗过的大鼠显示了较低的对声音本身所诱导的恐惧程度,而且它们原先的恐惧记忆自动重现的机率也较小。 这种技术似乎能够永久性地覆盖恐惧记忆,而且无需使用药物。 在未来的某一天,也许可以将这种技术用在人的身上来治疗精神性的疾病并克服我们的恐惧性联想。

都是世界顶级学术期刊。《科学》是美国科学促进会主办和发行的。《自然》则是英国的。两者都是发表来自很多科学领域的研究论文。没有中文版,英文版可以网上看

自然光子学期刊影响因子

不同领域差别比较大,不能一概而论。3-4比较好了,至少是主流期刊吧。生物方向不太了解。

影响因子为682。Opto-Electronic Advances  (OEA) 是一份高影响力、开放获取、同行评审的 SCI 期刊,影响因子为682,并在光学类别的第一季度四分位数中排名第一。自 2018 年 3 月推出以来,OEA 已被 SCI、EI、Scopus、CA 和 ICI 数据库收录。OEA 的编辑委员会有来自 15 个国家的 33 名成员(平均 h-index 46)。它致力于为研究人员、院士、专业人士、从业人员和学生提供一个平台,以涵盖光学、光子学和光电子学广泛领域的高质量实证和理论研究论文的形式传授和分享知识。OEA 专注于快速和创新的结果,其主要主题包括:光源和传感器、光电、纳米光子学、等离子体和超材料、、先进的光学材料、光学成像、生物光子学和生物医学光学、非线性光学和超快光子学、光通信、光伏。CN: 51-1781/TN,ISSN:2096-4579。影响1、填补国内外光电技术工程领域的期刊空白。2、推动国际光电科学领域高端学术与工程发展 。3、扩大我国在该领域科学研究的国际影响力与核心竞争能力。4、增强我国科技期刊的服务创新能力。

生物和医学类期刊影响因子算很高的,cell之类的可以到三四十。想物理、化学类到十几就算国际领先水平了。3-4也不算烂,但也不算好,一般学校里博士发3-4的文章就可以毕业了。

影响因子(Impact Factor,IF)是美国ISI(科学信息研究所)的JCR(期刊引证报告)中的一项数据。即某期刊前两年发表的论文在统计当年的被引用总次数除以该期刊在前两年内发表的论文总数。这是一个国际上通行的期刊评价指标。生物学上,国际期刊的影响因子达到3-4已经很不错了,国内的核心期刊都很少被SCI收录,即使收录了也很少达到这个因子。至于国内期刊的影响因子怎么算,价值有多大,这个很少关注。

自然因子期刊

区别是:nature是英国,science是美国;nature的影响因子稍高于science一点;nature的创刊时间比science早一些。《Nature》创建于1869年的《自然》杂志(Nature)是国际领先的科学周刊,也是自然科研这一品牌的核心期刊。自然科研还出版一系列冠名“自然”的研究和综述类订阅型期刊、国际领先的多学科开放获取期刊《自然-通讯》(Nature Communications)。包括大型开放获取期刊《科学报告》(Scientific Reports)在内的其它开放获取期刊,以及现统称为自然合作期刊(Nature Partner Journals)的合作类刊物。自然科研网站每月访客人数超过800万,网站提供自然科研的出版物与服务,如《自然》杂志的新闻和评论以及国际领先的科研人员招聘平台Naturejobs。自然科研的一系列研究者服务则包括了在线和面对面的培训、专业的语言和编辑服务等。自然科研是施普林格·自然集团旗下品牌,集团为全球领先的科研、教育和专业出版机构。施普林格·自然集团出版了全球最多的学术书籍,以及全球最具影响力的期刊,同时也是推动开放研究的先行者。集团在全球约有3万名员工,遍及50多个国家。施普林格·自然在2015年由自然出版集团、帕尔格雷夫·麦克米伦、麦克米伦教育、施普林格科学与商业媒体合并而成。《Science》是美国的期刊《科学》成立于1880年。它是全球最引人注目的主要期刊之一,它的引用率可以反映这个情况。在汤森路透(Thomson Reuters)提供的2007年期刊引证报告(Journal Citation Reports)中,《科学》在影响评级方面位于所有科学期刊的第十四位。自1900年以来,美国科促会(American Association for the Advancement of Science, AAAS)这个非营利组织每周出版一期《科学》期刊,而科促会成立于1848年。如今,《科学》有131286名订阅者,加上传阅的读者的话,其流通率估计有70万。和它的商业同行《自然》一样,作为一个跨学科的期刊,《科学》充当了促进学科之间观念转移的一个中介。它向全世界的科学发声,并且消除不同学科和学科之外的代沟。除了发表原创的科学研究论文之外,《科学》还发布旨在总体上更可读且有趣的新闻和各种形式的分析。我们一般说是否为顶级期刊,可能更多的是说它们的影响因子,根据有关资料显示,《science》在2016-2017最新影响因子是205,而《nature》则为137。就这个数字来看,二者确实算是影响力很大的期刊了。而且很多科研院所都把重要的科研成果投向这两个刊物所在的机构。当然,除此之外还有很多其他重要的看法,比如《柳叶刀》、《新英格兰医学期刊》、《美国科学院院刊》等等。另外,一些科研机构也会列出自己领域的重要期刊,甚至会要求其科研人员必须在这些刊物上发表研究成果才能结题或毕业等等,这种做法其实不值得提倡。

影响因子:778(2019年)。    《自然》(英语:Nature)是世界上最早的科学期刊之一,也是全世界最权威及最有名望的学术期刊之一,首版于1869年11月4日。虽然今天大多数科学期刊都专一于一个特殊的领域,《自然》是少数(其它类似期刊有《科学》和《美国国家科学院院刊》)依然发表来自很多科学领域的一手研究论文的期刊。在许多科学研究领域中,每年最重要、最前沿的研究结果是在《自然》中以短文章的形式发表的。《自然》是一份在英国发表的周刊,其出版商为自然出版集团,这个集团属于麦克米伦出版有限公司,而它则属于格奥尔格·冯·霍茨布林克出版集团。《自然》在伦敦、纽约、旧金山、华盛顿哥伦比亚特区、东京、巴黎、慕尼黑和贝辛斯托克设有办公室。自然出版集团还出版其它专业杂志如《自然神经科学》、《自然生物学技术》、《自然方法》、《自然临床实践》、《自然结构和分子生物学》和《自然评论》系列等。自然发表据《科学》报道,另一本发表在《自然》杂志上的学术期刊在学术界享有一定的声誉。特别是,实证论文经常被高度引用,这可能会导致主流媒体的宣传、资助和关注。由于这些正反馈效应,科学家之间在Nature及其最接近的竞争对手Science等高水平期刊上发表文章的竞争可能非常激烈。自然'小号的影响因素,有多少引用日志生成等作品的措施,为138在2015年(通过测量汤姆森ISI)。然而,与许多期刊一样,大多数论文的引用次数远少于影响因子所显示的引用次数。Nature的期刊影响因子有一条长尾。

光学与光子学期刊

光子学报文章是免费看的《光子学报》(月刊)是1972年创刊,由中国光学学会主办和编辑,中国科学院西安光学精密机械研究所承办,由科学出版社出版的学术月刊。代表旨在展示光子学研究领域的新理论、新概念、新思想、新技术和新进展的本学科前沿,具有国内外先进水平,反映国际关注的最新研究成果,促进国内外学术交流和讨论。《光子学报》由中国科学院士侯洵担任主编,邀请了大批院士和专家担任副主编和主编。读者对象:从事光学、光子学及相关学科科学研究者、工程技术人员和高等学校教师。本刊登文件收录在国内外的很多数据库中,作为固定收录源刊登在着名的检索刊物SA(PA,EEA)、CA、p、CSCD中。主要栏目:量子光学、光生物学、过渡光学、光电子学、光纤通信、非线性光学、信息光学和生物光子学。报道了《光子学报》光子学研究领域的新理论、新概念、新思想、新技术和新进展,代表本科前沿,反映了国内外先进水平国际关注的最新研究成果。

美国光学学会osa是sci的Q1区。sci期刊分区是我们选择sci期刊的重要依据,sci期刊分区共有两种,一类是JCR分区,也就是汤森路透分区,共有Q1、Q2、Q3和Q4四个区,前25%(含25%)期刊划分为Q1区,osa是sci的Q1区。作为美国光学学会,osa以其技术倡导、行业项目、教育发展、文献发表、会议和更多其它行动为通信革命贡献了自己的力量。美国光学学会简介:美国光学学会,简称OSA,成立于 1916 年,是光学领域权威的国际性学术组织。OSA 的宗旨是促进光学和光子学知识的发展、应用和保存,并将这些知识传播到全世界。除了光学和光子学领域,还为物理学、生物学、医学、电气工程、通讯、天文学、气象学、材料科学、机械工程和计算等诸多领域的专家学者提供高水准的信息服务,OSA已经拥有超过106000位会员,遍及134个国家,包括光学和光子学领域的科学家、工程师、教育家、技术人员以及企业领导者。以上内容参考 百度百科-美国光学学会

相关百科

热门百科

首页
发表服务