首页

> 论文期刊知识库

首页 论文期刊知识库 问题

解析几何的诞生论文

发布时间:

解析几何的诞生论文

1617年,荷兰奥伦治公爵的军队里来了一名22岁的博士生,他就是伟大的数学家笛卡尔。一天,部队开到布雷达城,无所事事的笛卡尔漫步在大街上,忽然看见一群人围在一起议论纷纷,原来在一堵墙上贴着一张几何难题的悬赏启事。启事上说,谁能够解开此题谁就能获得本城最优秀的数学家称号。笛卡尔出于好奇心抄下题目,回到军营,专心致志地研究这道几何难题。经过潜心钻研,两天后,他终于求得了答案,由此使他数学天才初露锋芒。荷兰多特学院院长毕克曼十分赏识笛卡尔的才华,劝他说:“你有深厚的数学基础,才思敏捷,很适合数学研究。离开军队吧,我相信你将来会成功的。”笛卡尔没有离开军队,但仍然迷恋数学,尤其想碰一碰古希腊几何三大问题。说起这三大问题,还有一个很古老的传说:大约是2300多年前,古希腊的第罗斯岛上,一场可怕的瘟疫正在蔓延,人们生活在死亡的恐怖之中。他们来到神庙前祈求:“万能的神啊,请赐予我们平安吧!”谁知神庙里的主人欺这些可怜的人们说:“我忠实的信徒们,神在保佑着你们,只要你们把上供的正方体祭坛,在不改变原来形状的情况下,把它的体积增大到原来的两倍,神就会高兴,就能免除你们的灾难。”濒于死亡的人们听后立即去改造神的祭坛,他们把祭坛的每边棱长扩充到原来的两倍。但神庙的主人看后说:“这哪里是原来的两倍,这是原来的八倍了。神不高兴啊!”人们听后赶忙拆了重建,他们把体积改成了原来的两倍,可形状却是一个长方体。神庙的主人训斥道:“该死的信徒们,你们怎么把祭坛的形状改变了呢,这不是戏弄神吗?当心还有更大的瘟疫!”惊慌失措的人们急忙去找著名的学者柏拉图,把希望寄托在这位大智者的身上。谁知柏拉图和他的学生们无论怎么用直尺和圆规去画,也同样找不到正确的办法,于是,立方倍积问题便成了一道几何难题。后来,希腊人又碰到了把一个已知角分成三等分和化圆为方问题(即求一个正方形,使它的面积等于一个已知圆的面积)。从此,立方倍积、三等分角、化圆为方这三个问题一直困扰着世世代代的数学家,不少人为此呕心沥血,穷毕生精力也找不到答案。这样一直延续了2000年。笛卡尔认真总结前人的大量经验教训后猜想,古希腊三大几何难题,采用尺和规作图的办法。是不是本来就作不出呢?应该另找一条道路才是。1621年,笛卡尔退出军界,与数学家迈多治等朋友来到巴黎,潜心研究数学问题。1628年,他又移居资产阶级革命已经成功的荷兰,进行长达20年的研究。这是他一生最辉煌的时期。一天,疲惫不堪的笛卡尔躺在床上,望着天花板思考着数学问题。突然,他眼前一亮,原来,天花板上有一只蜘蛛正忙碌地编织着蛛网。那纵横交错的直线和四周的圆线相交叉一下子启发了他。困扰他多年的“形”和“数”问题,终于找到了答案。他兴奋地爬了起来,迫不及待地把灵感描绘出来。他发现了这样的规律,如果在平面上画出两条交叉的直线,假定这两条直线互成直角,那么就出现四个90度的直角。在这四个角的任一个点上设个位置,就可以建立起点的坐标系。这个发现的基本概念简单到近乎一目了然,但却是数学上的伟大发现。它就是建立了平面上点的作为坐标的数(x、y)之间一对应关系。进一步构成了平面上点与平面上曲线之间的一对应关系。从而把数学的两大形态——形与数结合了起来。不仅如此,笛卡尔还用代数方程描述几何图形,用几何图形表示代数方程的计算结果。于是,创造出了用代数方法解几何问题的一门崭新学科——解析几何。解析几何的诞生,改变了从古希腊以来,延续两千年的代数与几何分离的趋向,从而推动了数学的巨大发展。虽然,笛卡尔在有生之年没有解开古希腊三大几何问题,但他开创的解析几何却给后人提供了一把钥匙。解析几何的重大贡献,还在于它提供了当时科学发展迫切需要的数学工具。17世纪资本主义迅速发展,天文和航海等科学技术对数学提出了新的要求。例如,要确定船只在海上的位置,就要确定经纬度;要改善枪炮的性能,就要精确地掌握抛射体的运行规律。所有这些,涉及到的已不是常量而是变量。

1637年,笛卡尔发表了《几何学》,创立了平面直角坐标系。他用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间上的点。他进而又创立了解析几何学,据说,笛卡尔曾在一个晚上做了三个奇特的梦。第一个梦是,笛卡尔被风暴吹到一个风力吹不到的地方;第二个梦是他得到了打开自然宝库的钥匙;第三个梦是他开辟了通向真正知识的道路。这三个奇特的梦增强了他创立新学说的信心。这一天是笛卡尔思想上的一个转折点,也有些学者把这一天定为解析几何的诞生日。

解析几何学的产生论文

古希腊数学家梅内克缪斯(Menaechmus)的解题、证明方式与现在使用坐标系十分相似,以至于有时会认为他是解析几何的鼻祖。阿波罗尼奥斯在《论切触》中解题方式在现在被称之为单维解析几何;他使用直线来求得一点与其它点之间的比例。阿波罗尼奥斯在《圆锥曲线论》中进一步发展了这种方式,这种方式与解析几何十分相似,比起笛卡儿早了1800多年。他使用了参照线、直径、切线与现进所使用坐标系没有本质区别,即从切点沿直径所量的距离为横坐标,而与切线平行、并与数轴和曲线向交的线段为纵坐标。他进一步发展了横坐标与纵坐标之间的关系,即两者等同于夸张的曲线。然而,阿波罗尼奥斯的工作接近于解析几何,但它没能完成它,因为他没有将负数纳入系统当中。在此,方程是由曲线来确定的,而曲线不是由方程得出的。坐标、变量、方程不过是一些给定几何题的脚注罢了。十一世纪波斯帝国数学家欧玛尔·海亚姆发现了几何与代数之间的密切联系,在求三次方程使用了代数和几何,取得了巨大进步。但最关键的一步由笛卡儿完成。从传统意义上讲,解析几何是由勒内·笛卡儿(René Descartes)创立的。笛卡儿的创举被记录在《几何学》(La Geometrie)当中,在1637年与他的《方法论》一道发表。这些努力是以法语写成的,其中的哲学思想为创立无穷小提供了基础。最初,这些著作并没有得到认可,部分原因是由于其中论述的间断,方程的复杂所致。直到1649年,著作被翻译为拉丁语,并被冯·斯霍滕(van Schooten)恭维后,才被大众所认可接受。费马也为解析几何的发展做出了贡献。他的《平面与立体轨迹引论》(Ad Locos Planos et Solidos Isagoge)虽然没有在生前发表,但手稿于1637年在巴黎出现,正好早于笛卡儿《方法论》一点。《引论》文字清晰,获得好评,为解析几何提供了铺垫。费马与笛卡儿方法的不同在于出发点。费马从代数公式开始,然后描述它的几何曲线,而笛卡儿从几何曲线开始,以方程的完结告终。结果,笛卡儿的方法可以处理更复杂的方程,并发展到使用高次多项式来解决问题。

他在纸上画出了三条相互垂直的直线分别表示两墙的交线和墙与天花板的交线,并在空间点出一个P点代表蜘蛛,P到两墙的距离分别用X和Y表示,到天花板的距离用Z表示。这样,只要X、Y、Z有了准确的数值,P点的位置就完全可以确定了。他认为,两面墙与天花板交出了3条线,都汇合于墙角,如果将墙角当作计算起点,把这3条相互垂直的线作为3根标上数字的数轴,这样就构成了一个坐标系,空间的任何一个点都可以用3根数轴上3个有顺序的数来表示,而一组有顺序的3个数,也可用空间的一个点表示出来。这样,数与形就建立了必然的联系。笛卡尔又继续深入研究,不久便创立了一门新的数学分支一解析几何学。

关于解析几何的论文

勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a²+b²=c²,即α*α+b*b=c*c推广:把指数改为n时,等号变为小于号据考证,人类对这条定理的认识,少说也超过 4000 年!中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。) 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。

脚印论文网是国内首家专业论文C2C平台,主要业务包含:毕业论文、论文检索、论文下载、论文写作指导、论文翻译、论文推荐发表等。在论文检索、下载方面,脚印论文网依托维普、知网以及国内外多家重要电子数据库的海量信息,结合自身搜索技术,为千万网友提供论文便捷检索、浏览、下载服务。你咨询一下他们就可以了,希望对你有所帮助。

最近我们学习了“勾股定理”。它是初等几何中的一个基本定理,是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只有简单的一句话,但它却有着十分悠久的历史,尤其是它那“形数结合”、“形数统一”的思想方法,启迪和促进了我国乃至世界的数学发展。  勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯要早得多。在我国最早的数学著作《周髀算经》的开头,有一段周公与商高的“数学对话”:  周公问:“听说您对数学非常精通,我想请教一下:我们一没有登天的云梯,二没有丈量整个地球的尺子,那么我们怎样才能得到关于天地之间的数据呢?”  商高回答说:“我们已经在实践中总结出了一些了解天地的好方法。如当直角三角形(矩)的一条直角边(勾)等于3,另一条直角边(股)等于4的时候,那么它的斜边(弦)就必定是5。这就叫做勾股弦定理,是在大禹治水的时候就总结出来的一个定理。”  如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,这就比毕达哥拉斯要早五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。  我国古代数学家们不仅很早就发现并应用了勾股定理,而且很早就尝试对勾股定理作出理论性的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。他创制了一幅“勾股圆方图”,用形数结合的方法,对勾股定理进行了详细的证明。在“勾股圆方图”中,以弦为边长得到正方形abde,它是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间那个小正方形的边长为b-a,则面积为(b-a)2。于是便有了如下的式子:a2+b2=c2。《九章算术》中的《勾股章》,对勾股定理的表述是:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2)  我国古代数学家对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数结合”、“形数统一”的思想方法,更具有科学创新的重大意义。正如我国当代数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展的十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”  我们今天学习勾股定理,不但要学会利用它进行计算、证明和作图,更要学习和了解它的历史,了解其中体现出来的“形数结合”、“形数统一”的思想方法,这对我们今后的数学发展和科学创新都将具有十分重大的意义。

勾股定理 最近我们学习了“勾股定理”。它是初等几何中的一个基本定理,是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理虽然只有简单的一句话,但它却有着十分悠久的历史,尤其是它那“形数结合”、“形数统一”的思想方法,启迪和促进了我国乃至世界的数学发展。 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代人民对这一数学定理的发现和应用,远比毕达哥拉斯要早得多。在我国最早的数学著作《周髀算经》的开头,有一段周公与商高的“数学对话”: 周公问:“听说您对数学非常精通,我想请教一下:我们一没有登天的云梯,二没有丈量整个地球的尺子,那么我们怎样才能得到关于天地之间的数据呢?” 商高回答说:“我们已经在实践中总结出了一些了解天地的好方法。如当直角三角形(矩)的一条直角边(勾)等于3,另一条直角边(股)等于4的时候,那么它的斜边(弦)就必定是5。这就叫做勾股弦定理,是在大禹治水的时候就总结出来的一个定理。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,这就比毕达哥拉斯要早五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。 现总结勾股定理证明方法如下: 证明方法一:取四个与Rt△ABC全等的直角三角形,把它们拼成如图所示的正方形。 如图,正方形ABCD的面积 = 4个直角三角形的面积 + 正方形PQRS的面积 ∴ ( a + b )2 = 1/2 ab × 4 + c2 a2 + 2ab + b2 = 2ab + c2 故 a2 + b2 =c2 证明方法二: 图1中,甲的面积 = (大正方形面积) - ( 4个直角三角形面积)。 图2中,乙和丙的面积和=(大正方形面积)-( 4个直角三角形面积)。 因为图1和图2的面积相等, 所以甲的面积=乙的面积+丙的面积 即:c2 = a2 + b2 证明方法三: 四个直角三角形的面积和 +小正方形的面积 =大正方形的面积, 2ab + ( a -b ) 2 = c2, 2ab + a2 - 2ab + b2 = c2 故 a2 + b2=c2 证明方法四: 梯形面积 = 三个直角三角形的面积和 1/2 × ( a + b ) × ( a + b ) = 2 × 1/2 × a × b + 1/2 × c × c (a + b )2 = 2ab + c2 a 2 + 2ab + b2 = 2ab + c2 故 a2 + b2=c2 这是常用的四种方法,下面是另外的四种方法: 【证法1】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上 过C作AC的延长线交DF于点P ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形 ∴ ∠ABC + ∠CBE = 90º ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD ∴ ∠EBD + ∠CBE = 90º 即 ∠CBD= 90º 又∵ ∠BDE = 90º,∠BCP = 90º,

有关解析几何的论文

怎么说例文你是要找范文就好吗

脚印论文网是国内首家专业论文C2C平台,主要业务包含:毕业论文、论文检索、论文下载、论文写作指导、论文翻译、论文推荐发表等。在论文检索、下载方面,脚印论文网依托维普、知网以及国内外多家重要电子数据库的海量信息,结合自身搜索技术,为千万网友提供论文便捷检索、浏览、下载服务。你咨询一下他们就可以了,希望对你有所帮助。

1、高等代数与解析几何课程整合的思考2、线性代数教材内容与体系结构改革的思考与实践3、关于空间解析几何中“矢量积”教学的探讨4、解析几何最值问题探究5、解析几何的建立和意义

解析几何在生活中的应用论文

测定一些难以测定的距离和高度,利用解析几何来处理。 平行四边形的不稳定性和三角形的稳定性来做东西,自行车支架用了三角形,防盗门用了平行四边形。 利用立体几何的知识,可以测定物体的体积。

给几个网址你-SXTX2003Zhtm大部分设计制造行业都需要几何知识 空间科学,计算机科学,多了去了 解析几何中,几何作为代数的一种直观表示方法,能够解决很多问题。

电脑屏幕、窗户,梯子的横称,钢琴的键盘

平面上到两定点距离和的值是一个常数的图形是椭圆差是常数的图形是双曲线到两定点的距离是一个不为零的常数是是圆……

相关百科

热门百科

首页
发表服务