首页

> 论文期刊知识库

首页 论文期刊知识库 问题

材料科学研究的核心问题是什么课程

发布时间:

材料科学研究的核心问题是什么课程

生物功能材料专业正是根据社会发展的需要,特别是生物医学工程、组织工程和药物释放等交叉学科技术的迅速发展对专业人才的迫切需求而设立的。

主要分无机非金属,金属材料,冶金,模具,铸造,焊接,高分子等专业,属于近机械类专业,本科就业情况还行(因为比较冷门),但是工资一般不高,而且工作环境不是很好,建议别报这个专业,选个别的专业吧,电气呀,信息啊,建筑啊都不错,女孩子的话就上个师范类的或医学类的也都不错

中南大学材料科学与工程的核心课程:材料物理与化学、材料学、材料加工工程  中南大学材料科学与工程学院始建于1954年,原名金属工艺系,1962年与1980年先后更名为特种冶金系和材料科学与工程系,2002年正式成立材料科学与工程学院。学院是国家首批材料科学与工程一级学科博士点授权单位,拥有博士后流动站和材料物理与化学、材料学、材料加工工程、电子信息材料与器件、材料计算科学与虚拟工程五个二学科博士点,其中材料物理与化学、材料学、材料加工工程均为国家重点学科。学院现设有材料物理与化学系、材料学系、材料加工工程系、实验中心、新材料研究开发中心5个二级机构,教育部有色金属材料科学与工程重点实验室和湖南省有色、稀有金属材料科学与工程重点实验室均以本学院为依托单位。

材料科学研究的核心问题是什么

材料科学就是从事对材料本质的发现、分析认识、设计及控制等方面研究的一门科学。其目的在于揭示材料的行为,给予材料结构的统一描绘或建立模型,以及解释结构与性能之间的内在关系。材料科学的内涵可以认为是由五大要素组成,他们之间的关联可以用一个多面体来描述(图1-1)。其中使用效能是材料性能在工作状态(受力、气氛、温度)下的表现,材料性能可以视为材料的固有性能,而使用效能则随工作环境不同而异,但它与材料的固有性能密切相关。理论及材料与工艺设计位于多面体的中心,它直接和其它5个要素相连,表明它在材料科学中的特殊地位。材料科学的核心内容是结构与性能。为了深入理解和有效控制性能和结构,人们常常需要了解各种过程的现象,如屈服过程、断裂过程、导电过程、磁化过程、相变过程等。材料中各种结构的形成都涉及能量的变化,因此外界条件的改变也将会引起结构的改变,从而导致性能的改变。因此可以说,过程是理解性能和结构的重要环节,结构是深入理解性能的核心,外界条件控制着结构的形成和过程的进行。材料的性能是由材料的内部结构决定的,材料的结构反映了材料的组成基元及其排列和运动的方式。材料的组成基元一般为原子、离子和分子等,材料的排列方式在很大程度上受组元间结合类型的影响,如金属键、离子键、共价键、分子键等。组元在结构中不是静止不动的,是在不断的运动中,如电子的运动、原子的热运动等。描述材料的结构可以有不同层次,包括原子结构、原子的排列、相结构、显微结构、结构缺陷等,每个层次的结构特征都以不同的方式决定着材料的性能。物质结构是理解和控制性能的中心环节。组成材料的原子结构,电子围绕着原子核的运动情况对材料的物理性能有重要影响,尤其是电子结构会影响原子的键合,使材料表现出金属、无机非金属或高分子的固有属性。金属、无机非金属和某些高分子材料在空间均具有规则的原子排列,或者说具有晶体的格子构造。晶体结构会影响到材料的诸多物理性能,如强度、塑性、韧性等。石墨和金刚石都是由碳原子组成,但二者原子排列方式不同,导致强度、硬度及其它物理性能差别明显。当材料处于非晶态时,与晶体材料相比,性能差别也很大,如玻璃态的聚乙烯是透明的,而晶态的聚乙烯是半透明的。又如某些非晶态金属比晶态金属具有更高的强度和耐蚀性能。此外,在晶体材料中存在的某些排列的不完整性,即存在结构缺陷,也对材料性能产生重要影响。我们在研究晶体结构与性能的关系时,除考虑其内部原子排列的规则性,还需要考虑其尺寸的效应。从聚集的角度看,三维方向尺寸都很大的材料称为块体材料,在一维、二维或三维方向上尺寸变小的材料叫做低维材料。低维材料可能具有块体材料所不具备的性质,如零维的纳米粒子(尺寸小于100nm)具有很强的表面效应、尺寸效应和量子效应等,使其具有独特的物理、化学性能。纳米金属颗粒是电的绝缘体和吸光的黑体。以纳米微粒组成的陶瓷具有很高的韧性和超塑性。纳米金属铝的硬度为普通铝的8倍。具有高强度特征的一维材料的有机纤维、光导纤维,作为二维材料的金刚石薄膜、超导薄膜等都具有特殊的物理性能。

我就是材料工程需学院的,看是什么系了,不同的系差别还是有的在

材料科学与工程,Material Science and Engineering,是一个很大的专业。我是这个专业的四年本科再加两年硕士,它研究的内容很广,包括材料基础知识(材料科学与基础、材料力学、材料工程基础、大学物理、物理化学、晶体结构、高分子复合材料、材料物理性能、有机化学、无机化学、材料分析检测等),还有更专业的类别,比如金属(金属材料学、金属热处理等)、焊接(钎焊、熔焊等)、无机非金属、腐蚀、材料加工(铸造、轧制、注射成形)、纳米材料、表面材料(镀层、涂层)、粉体材料(制微粒、压制、烧结)、陶瓷材料等等。所以内容非常庞大,既有抽象复杂的理论知识,也有很实际具体的工程知识, 需要掌握的内容非常多。MSE是现在国内外都非常热门的专业之一,就我这么多年的观察来说,就业十分容易,几乎不受经济危机的影响,工作好找,行情也一直火爆。研究生深造可以选择的方向也非常多。希望对你有所帮助。

材料科学研究的内容主要包括研究材料组成、结构、生产过程、材料性能与使用性能把。

材料科学研究的核心问题是

材料科学是跨学科领域,通常也称为材料科学与工程,该学科的主要研究的是设计和发现新材料,特别是在固体材料方面。材料科学的知识起源于启蒙运动,当时研究人员开始使用化学、物理和工程方面的知识去观察分析理解冶金和矿物学中出现的古老的现象。材料科学家强调理解材料的处理时间过程(加工过程)如何影响其结构,从而影响材料的性能。对加工-结构-性质关系的理解被称为材料研究的范式。随着近年来媒体将注意力大量集中在纳米科学上,材料科学在科学与工程学领域越来越广为人知。它也是鉴识科学和破坏分析中的一个重要组成部分,以后者为例,它是分析各种飞航意外的关键。人类目前面临的许多最紧迫的科学问题都是现有材料及其使用方式的限制所导致的。因此,材料科学的突破很可能会对科学技术的未来产生重大影响。

材料科学与工程研究大量引入计算机模拟技术,已成为实验和分析理论之间的桥梁和补充,成为材料科学基础研究的有力工具,计算材料学和材料科学设计理论正在全面形成。计算机控制技术的发展正在推动材料工程技术的发展,正在形成新型智能材料工程技术。材料科学与工程的科技发展更加依赖于规律、模型、理论、设计与应用,制备和工艺技术,计算与模拟,实验技术等四大方面的发展与成就,大力推动这四大方面的相互协调发展是材料科学和工程技术发展的重要标志。里面的四个方面应该是吧,这是我的答案您满意吗?

四要素:成分和结构,合成,性质,使用性能。

加工过程,结构,性质,使用性能

材料科学研究的核心问题是啥问题

材料的五个判据:资源判据、能源判据、环保判据、质量判据、经济判据。材料是人类用于制造物品、器件、构件、机器或其它产品的那些物质。根据材料服役的技术领域可分为信息材料、航空航天材料、能源材料、生物医用材料等。材料科学与工程是研究材料组成、结构、生产过程、材料性能与使用效能以及它们之间的关系。材料科学与工程简介:材料科学与工程的四个基本要素:合成与生产过程,组成与结构,性质,使用性能,晶体是指其内部粒子呈规则排列的物质,如水晶,食盐,金属等。材料科学是指自然科学的一个分支,它从事于材料本质的发现、分析和了解方面的研究,其目的在于提供材料结构的统一描绘或模型,以及解释这种结构与性能之间的关系。核心问题是结构和性能。材料的性能。材料的性能是指由材料的内部结构决定的。材料的结构根据不同的尺度可以分为不同层次,包括原子结构、原子的排列、相结构、显微组织(多相结构)。材料结构。材料的结构表明材料的组元及其排列和运动方式。材料的组元指组成材料的物质组元,如原子、分子和离子等。材料的排列方式取决于组元间的结合类型,如金属键、离子键、共价键、分子键等。材料的结构根据不同的尺度可以分为不同层次,包括原子结构、原子的排列、相结构、显微组织(多相结构)。每个层次的结构都以不同方式决定着材料的性能。

材料科学与工程,Material Science and Engineering,是一个很大的专业。我是这个专业的四年本科再加两年硕士,它研究的内容很广,包括材料基础知识(材料科学与基础、材料力学、材料工程基础、大学物理、物理化学、晶体结构、高分子复合材料、材料物理性能、有机化学、无机化学、材料分析检测等),还有更专业的类别,比如金属(金属材料学、金属热处理等)、焊接(钎焊、熔焊等)、无机非金属、腐蚀、材料加工(铸造、轧制、注射成形)、纳米材料、表面材料(镀层、涂层)、粉体材料(制微粒、压制、烧结)、陶瓷材料等等。所以内容非常庞大,既有抽象复杂的理论知识,也有很实际具体的工程知识, 需要掌握的内容非常多。MSE是现在国内外都非常热门的专业之一,就我这么多年的观察来说,就业十分容易,几乎不受经济危机的影响,工作好找,行情也一直火爆。研究生深造可以选择的方向也非常多。希望对你有所帮助。

材料科学与工程四要素之间的关系如下:1、定义:材料科学与工程专业是研究材料成分、结构、加工工艺与其性能和应用的学科。主要专业方向有金属材料、无机非金属材料、耐磨材料、表面强化、材料加工等其目的在于揭示材料的行为。材料科学与工程属于工学学科门类之中的其中一个一级学科,下设3个二级学科,分别是:材料物理与化学、材料学、材料加工工程。2、材料科学与工程的内涵:材料工程-研究材料在制备过程中的工艺和工程技术问题。 材料科学与工程-研究材料组成、结构、生产过程、材料性能与使用性能以及他们之间的关系。四要素:组织结构、成分工艺、材料性能与使用性能下图为材料科学的模型,来帮助解释下材料科学与工程的内涵。如图所示为材料4个要素之间的关系。4个要素反映了材料科学与工程研究中的共性间题,其中合成和加工、受加工影响的使用性能是两个普遍的关键要素,正是在这4个要素上,各种材料相互借鉴、相互补充、相互渗透。抓住了这4个要素,就抓住了材料科学与工程研究的本质。而各种材料,是其特征所在,反映了该种材料与众不同的个性。如果这样去认识,则许多长期困扰材料科技工作者的问题都将迎刃而解。可以依据这4个基本要索评估材料研究中的机遇,以新的或更有效的方式研制和生产材料,这4个要素的相对重要性,而不必拘泥子材料类别、功用或从基础研究到工程化过程中所处的地位。同时,也使材料科技工作者可以识别和跟踪材料科学与工程研究的主要发展趋势。材料性能是材料功能特性和效用(如电、磁、光、热、力学等性质)的定量度量和描述。任何一种材料都有其特征的性能和应用。例如金属材料具有刚性和硬度,可以用作各种结构件;它也具有延性,可以加工成导线或受力用线材;一些特种合金,如不锈钢、形状记忆合金、超导合金等,以用作耐腐蚀材料、智能材料和超导材料等。陶瓷有很高的熔点、高的强度和化学惰性,可用作高温发动机和金属切削刀具等;而具有压电、介电、半导体、磁学、机械等特性的特种陶瓷,在相应的领域发挥作用,但陶瓷的脆性则限制了它的应用,开发具有高延伸率的韧性陶瓷成了材料科技作者追求的目标。利用金刚石的耀度和透明性,可制成光灿夺目的宝石和性能光学涂层;而利用其硬度和导热性,可用作切削工具和传导材料。高分子材料以其各种独特的性能使其在各种不同的产品上发挥作用。材料的性能是由材料的内部结构决定的,材料的结构反映了材料的组成基元及其排列和运动的方式。材料的组成基元一般为原子、离子和分子等,材料的排列方式在很大程度上受组元间结合类型的影响,如金属键、离子键、共价键、分子键等。组元在结构中不是静止不动的,是在不断的运动中,如电子的运动、原子的热运动等。描述材料的结构可以有不同层次,包括原子结构、原子的排列、相结构、显微结构、结构缺陷等,每个层次的结构特征都以不同的方式决定着材料的性能。物质结构是理解和控制性能的中心环节。组成材料的原子结构,电子围绕着原子核的运动情况对材料的物理性能有重要影响,尤其是电子结构会影响原子的键合,使材料表现出金属、无机非金属或高分子的固有属性。使用性能是材料性能在工作状态(受力、气氛、温度)下的表现,材料性能可以视为材料的固有性能,而使用效能则随工作环境不同而异,但它与材料的固有性能密切相关。理论及材料与工艺设计位于多面体的中心,它直接和其它5个要素相连,表明它在材料科学中的特殊地位。 使用性能包括可靠性、有效寿命、速度(器件或车辆的)、能量利用率(机器或常用运载工具的)、安全性和寿命期费用等。因此,建立使用性能与材料基本性能相关联的模型,了解失效模式,发展合理的仿真试验程序,开展可靠性、耐用性、预测寿命的研究,以最低代价延长使用期,对先进材料研制、设计和工艺是至关重要的。这些问题,不仅对大型结构和机器用的材料,而且对电子器件、磁性器件和光学器件中的结构元件和其他元件所用的材料,都是十分必要的。组织与结构每个特定的材料都含有一个以原子和电子尺度到宏观尺度的结构体系,对于大多数材料,所有这些结构尺度上化学成分和分布是立体变化的,这是制造该种特定材料所采用的合成和加工的结果。而结构上几乎无限的变化同样会引起与此相应的一系列复杂的材料性质。因此,在各种尺度上对结构与成分的深人了解是材料科学与工程的一个主要方面。材料科学的核心内容是结构与性能。为了深入理解和有效控制性能和结构,人们常常需要了解各种过程的现象,如屈服过程、断裂过程、导电过程、磁化过程、相变过程等。材料中各种结构的形成都涉及能量的变化,因此外界条件的改变也将会引起结构的改变,从而导致性能的改变。因此可以说,过程是理解性能和结构的重要环节,结构是深入理解性能的核心,外界条件控制着结构的形成和过程的进行。金属、无机非金属和某些高分子材料在空间均具有规则的原子排列,或者说具有晶体的格子构造。晶体结构会影响到材料的诸多物理性能,如强度、塑性、韧性等。石墨和金刚石都是由碳原子组成,但二者原子排列方式不同,导致强度、硬度及其它物理性能差别明显。当材料处于非晶态时,与晶体材料相比,性能差别也很大,如玻璃态的聚乙烯是透明的,而晶态的聚乙烯是半透明的。又如某些非晶态金属比晶态金属具有更高的强度和耐蚀性能。此外,在晶体材料中存在的某些排列的不完整性,即存在结构缺陷,也对材料性能产生重要影响。我们在研究晶体结构与性能的关系时,除考虑其内部原子排列的规则性,还需要考虑其尺寸的效应。具有高强度特征的一维材料的有机纤维、光导纤维,作为二维材料的金刚石薄膜、超导薄膜等都具有特殊的物理性能。成分工艺:工艺是指建立原子、分子和分子聚集体的新排列,在从原子尺度到宏观尺度的所有尺度上对结构进行控制以及高效而有竞争力地制造材料和零件的演变过程。合成常常是指原子和分子组合在一起制造新材料所采用的物理和化学方法。合成是在固体中发现新的化学现象和物理现象的主要源泉,合成还是新技术开发和现有技术改进中的关键性要素。合成的作用包括合成新材料、用新技术合成已知的材料或将已知材料合成为新的形式、将已知材料按特殊用途的要求来合成3个方面。而加工(这里所指的加工实际上是成型加工),除了上述为生产出有用材料对原子和分子控制外,还包括在较大尺度上的改变,有时也包括材料制造等工程方面的问题。对企业来说,材料的合成和加工是获得高质量和低成本产品的关键,把各种材料加工成整体材料、元器件、结构或系统的方法都将关系到工作的成败,材料加工能力对于把新材料转变成有用制品或改进现有材料制品都是十分重要的。材料加工涉及许多学科,是科学、工程以及经验的综合,是制造技术的一部分,也是整个技术发展的关键一步,它利用了研究与设计的成果,同时也有赖于经验总结和广泛的试验工作。一个国家保持强有力的材料加工技术研究能力,对各个工业部门实现高质量、高效率是至关重要的。

材料科学研究的核心问题有什么

加工过程,结构,性质,使用性能

今天考试了,之间的关系是什么

材料科学与工程研究大量引入计算机模拟技术,已成为实验和分析理论之间的桥梁和补充,成为材料科学基础研究的有力工具,计算材料学和材料科学设计理论正在全面形成。计算机控制技术的发展正在推动材料工程技术的发展,正在形成新型智能材料工程技术。材料科学与工程的科技发展更加依赖于规律、模型、理论、设计与应用,制备和工艺技术,计算与模拟,实验技术等四大方面的发展与成就,大力推动这四大方面的相互协调发展是材料科学和工程技术发展的重要标志。里面的四个方面应该是吧,这是我的答案您满意吗?

不会吧?我也很想知道这个问题啊。你是不是工大材料院的啊?

相关百科

热门百科

首页
发表服务