首页

> 论文期刊知识库

首页 论文期刊知识库 问题

有关红外光谱的论文

发布时间:

有关红外光谱的论文

红外分光光度法 infrared spectrophotometry 通常指2~50 波长范围(波数为4 000~200cm-1)的中红外区的吸收光谱分析法。物质在红外光照射下选择性地吸收其中与分子振动、转动频率相同的红外线,而形成一些吸收谱带,称为红外光谱。不同结构的分子具有不同的振动能级,因而出现代表分子结构的各不相同的特征红外光谱,由此可进行分子的定性与定量分析。有机物中大多数基团相对独立地在红外光谱的一定频率范围内出现其特征吸收峰,从而可鉴定分子中的基团。广泛用于制药、染料、石油、高分子、半导体及环境中有机污染物的分析鉴定。

推荐到OA图书馆查询。输入英文关键词即可。

红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定。红外光谱不但可以用来研究分子的结构和化学键,如力常数的测定和分子对称性的判据,而且还可以作为表征和鉴别化学物种的方法。例如气态水分子是非线性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液态水分子的红外光谱中,由于水分子间的氢键作用,使v1和v3的伸缩振动谱带叠加在一起,在3402厘米处出现一条宽谱带,它的变角振动v2位于1647厘米。在重水中,由于氘的原子质量比氢大,使重水的v1和v3重叠谱带移至2502厘米处,v2为1210厘米。以上现象说明水和重水的结构虽然很相近,但红外光谱的差别是很大的。红外光谱具有高度的特征性,所以采用与标准化合物的红外光谱对比的方法来做分析鉴定已很普遍,并已有几种标准红外光谱汇集成册出版,如《萨特勒标准红外光栅光谱集》收集了十万多个化合物的红外光谱图。近年来又将些这图谱贮存在计算机中,用来对比和检索。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,例如,经常出现在1600~1750厘米,称为羰基的特征波数。许多化学键都有特征波数,它可以用来鉴别化合物的类型,还可用于定量测定。由于分子中邻近基团的相互作用(如氢键的生成、配位作用、共轭效应等),使同一基团在不同分子中所处的化学环境产生差别,以致它们的特征波数有一定变化范围(见下表)。 红外光谱是物质定性的重要的方法之一。它的解析能够提供许多关于官能团的信息,可以帮助确定部分乃至全部分子类型及结构。其定性分析有特征性高、分析时间短、需要的试样量少、不破坏试样、测定方便等优点。传统的利用红外光谱法鉴定物质通常采用比较法,即与标准物质对照和查阅标准谱图的方法,但是该方法对于样品的要求较高并且依赖于谱图库的大小。如果在谱图库中无法检索到一致的谱图,则可以用人工解谱的方法进行分析,这就需要有大量的红外知识及经验积累。大多数化合物的红外谱图是复杂的,即便是有经验的专家,也不能保证从一张孤立的红外谱图上得到全部分子结构信息,如果需要确定分子结构信息,就要借助其他的分析测试手段,如核磁、质谱、紫外光谱等。尽管如此,红外谱图仍是提供官能团信息最方便快捷的方法。近年来,利用计算机方法解析红外光谱,在国内外已有了比较广泛的研究,新的成果不断涌现,不仅提高了解谱的速度,而且成功率也很高。随着计算机技术的不断进步和解谱思路的不断完善,计算机辅助红外解谱必将对教学、科研的工作效率产生更加积极的影响。 红外光谱定量分析法的依据是朗伯——比尔定律。红外光谱定量分析法与其它定量分析方法相比,存在一些缺点,因此只在特殊的情况下使用。它要求所选择的定量分析峰应有足够的强度,即摩尔吸光系数大的峰,且不与其它峰相重叠。红外光谱的定量方法主要有直接计算法、工作曲线法、吸收度比法和内标法等,常常用于异构体的分析。随着化学计量学以及计算机技术等的发展,利用各种方法对红外光谱进行定量分析也取得了较好的结果,如最小二乘回归,相关分析,因子分析,遗传算法,人工神经网络等的引入,使得红外光谱对于复杂多组分体系的定量分析成为可能。量子力学研究表明,分子振动和转动的能量不是连续的,而是量子化的,即限定在一些分立的、特定的能量状态或能级上。以最简单的双原子为例,如果认为原子间振动符合简谐振动规律,则其振动能量Ev可近似地表示为:式中h为普朗克常数;v为振动量子数(取正整数);v0为简谐振动频率。当v=0时,分子的能量最低,称为基态。处于基态的分子受到频率为v0的红外射线照射时,分子吸收了能量为hv0的光量子,跃迁到第一激发态,得到了频率为v0的红外吸收带。反之,处于该激发态的分子也可发射频率为v0的红外射线而恢复到基态。v0的数值决定于分子的约化质量μ和力常数k。k决定于原子的核间距离、原子在周期表中的位置和化学键的键级等。分子越大,红外谱带也越多,例如含12个原子的分子,它的简正振动应有30种,它的基频也应有30条谱带,还可能有强度较弱的倍频、合频、差频谱带以及振动能级间的微扰作用,使相应的红外光谱更为复杂。如果假定分子为刚性转子,则其转动能量Er为:式中j为转动量子数(取正整数);i为刚性转子的转动惯量。在某些转动能级间也可以发生跃迁,产生转动光谱。在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。辅助解析有机化合物的结构鉴定在有机化学、生物化学、药物学、环境科学等许多领域越来越显示出它的重要性,而在各种鉴定手段中红外光谱以其方便灵敏的特性成为有机物结构鉴定的重要手段,除了它对分析结构特征反应灵敏这一特点外,红外光谱仪与计算机直接联机,也为引进一些与计算机科学有关的智能手段创造了条件。各种现代化的分析仪器的出现和广泛应用,使得在短时间内获得物质体系大量信息成为可能,这为化学计量学的数据挖掘研究提供了机遇。由光谱仪器记录下来的谱图中包含大量的结构信息,但是目前还不能实现复杂分子光谱谱图的直接计算,其解析主要还凭借经验,对一个不是长期从事结构鉴定的人来说,解析一张光谱谱图是一项很困难的工作。实际上,即使对不太复杂的分子,也难于指定所有杂原子所处的官能团和峰的归属,而依靠各种计算机检索系统也会受到各种限制,诸如谱图库中数据有限,或测定条件(仪器的类型、具体的实验条件等)与标准图谱所用的条件不同而造成各吸收峰位置的改变等。另外由于红外谱图极其复杂,构成化合物的原子质量不同,化学键的性质不同,原子的连接次序和空间位置的不同都会造成红外光谱的差别。这些都使红外光谱的解析复杂化。如果能由计算机学习和存储红外光谱知识,用计算机辅助完成解析谱图的工作,自然是一件很有意义的事。几十年以来,人们一直在探索将红外图谱的解析智能化。随着商品化红外光谱仪的计算机化,出现了许多计算机辅助红外光谱识别方法,这些方法大致可以分为三类:谱图检索系统、专家系统、模式识别方法。 谱图检索的主要优点是能够收集大量的光谱,只要根据未知物的光谱谱图就能识别化合物而无需其他数据(例如分子式等),它的程序也比较简单。但是它也有一些不可克服的缺点:首先,检索系统的能力与谱图库存储的化合物的数量成正比,我们不可能把自然界所有的化合物收集其中,谱图库的发展总是滞后于有机化学的发展。其次,光谱仪器随着技术的发展不断改进:波谱范围不断扩大,分辨率不断提高,低温技术得到应用,一些新仪器的出现,这就要求原有的谱图库要不断修改,而庞大的谱图库在短时间内是办不到的。由于检索方法的这些特点,决定了它不能作为结构鉴定的一种完整的手段。专家系统计算机辅助结构解析的另一种方法是专家系统。它所研究的领域包括:数学证明,程序编写,行为科学与心理学,生命科学与医学等。目前设计的专家系统解析谱图的一般方法是:在计算机里预先存储化学结构形成光谱的一些规律;由未知物谱图的一些光谱特征推测出未知物的一些假想结构式;根据存储规律推导出这些假想结构式的理论谱图,再将理论谱图与实验谱图进行对照,不断对假想结构式进行修正,最后得到正确的结构式。但是,目前分子中各种基团的吸收规律,主要还是通过经验或者人工获得。人工比较大量的已知化合物的红外谱图,从中总结出各种基团的吸收规律,其结果虽比较真实地反映了红外光谱与分子结构的对应关系,却不够准确,特别是这些经验式的知识难以用计算机处理,使计算机专家解析系统难以实用化。模式识别模式识别的发展是从五十年代开始的,就是用机器代替人对模式进行分类和描述,从而实现对事物的识别。随着计算机技术的普遍应用,处理大量信息的条件已经具备,模式识别在六十年代得到了蓬勃发展,并在七十年代初奠定了理论基础,从而建立了它自己独特的学科体系。模式识别已经应用到分析化学领域的有关方面,其中涉及最多的是分子光谱的谱图解析,在一些分类问题上获得了成功。Munk等于1990年首次将线性神经网络应用于红外光谱的子结构解析,把红外光谱的解析带入了一个全新的领域,从此引起红外光谱的计算机解析热潮。随后各种方法,如各种人工神经网络,偏最小二乘,信号处理方法如小波变换等逐步引入到红外光谱的计算机解析中,使模式识别在红外光谱的应用中得到很好的发展。Cabrol-Bass等使用了一个分等级的神经网络系统识别红外光谱的子结构。首先把10000个化合物光谱分为含苯环、含羟基、含羰基、含C-NH以及含C=C等5大类,随后把这几个类进行进一步分类,总共33个子结构。每一个下级网络使用上一级网络输出的结果。以3596~500 cm-1波段每12 cm-1取259个点作为神经网络的输入,输出为“1”和“0”,分别代表子结构存在和不存在。使用了含有一个隐含层30个节点的反向传播神经网络对每个子结构进行识别,对化合物作了全面但较为粗略的分类,涉及了数据库中一些常见化合物。这些研究中大部分利用神经网络对子结构进行识别,而对特定类别的化合物没有做深入研究,对化合物的特征吸收峰也没有深入的讨论。另外,其中应用最多的人工神经网络在识别子结构时,对结构碎片的预测准确度不是很高,且神经网络存在不稳定、容易陷入局部极小和收敛速度慢等问题。因此,近年来,人们一直在寻找一种更好的模式识别方法来进行红外光谱的结构解析。Vapnik等人于1995年在统计学习理论(Statistical Learning Theory, SLT)的基础上提出了支持向量机(Support vector machine, SVM),它根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,以期获得最好的泛化能力。SVM目前在化学中得到了一些较成功的应用,SVM可以较好的对红外光谱的子结构进行识别,与ANN相比,SVM还具有稳定以及训练速度快等优点,是一种很好的辅助红外光谱解析的工具。

这个资料找找就有,还这么兴师动众干嘛?

关于红外光谱的论文

你可以上专业网站找相关资料的。

推荐到OA图书馆查询。输入英文关键词即可。

红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定。红外光谱不但可以用来研究分子的结构和化学键,如力常数的测定和分子对称性的判据,而且还可以作为表征和鉴别化学物种的方法。例如气态水分子是非线性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液态水分子的红外光谱中,由于水分子间的氢键作用,使v1和v3的伸缩振动谱带叠加在一起,在3402厘米处出现一条宽谱带,它的变角振动v2位于1647厘米。在重水中,由于氘的原子质量比氢大,使重水的v1和v3重叠谱带移至2502厘米处,v2为1210厘米。以上现象说明水和重水的结构虽然很相近,但红外光谱的差别是很大的。红外光谱具有高度的特征性,所以采用与标准化合物的红外光谱对比的方法来做分析鉴定已很普遍,并已有几种标准红外光谱汇集成册出版,如《萨特勒标准红外光栅光谱集》收集了十万多个化合物的红外光谱图。近年来又将些这图谱贮存在计算机中,用来对比和检索。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,例如,经常出现在1600~1750厘米,称为羰基的特征波数。许多化学键都有特征波数,它可以用来鉴别化合物的类型,还可用于定量测定。由于分子中邻近基团的相互作用(如氢键的生成、配位作用、共轭效应等),使同一基团在不同分子中所处的化学环境产生差别,以致它们的特征波数有一定变化范围(见下表)。 红外光谱是物质定性的重要的方法之一。它的解析能够提供许多关于官能团的信息,可以帮助确定部分乃至全部分子类型及结构。其定性分析有特征性高、分析时间短、需要的试样量少、不破坏试样、测定方便等优点。传统的利用红外光谱法鉴定物质通常采用比较法,即与标准物质对照和查阅标准谱图的方法,但是该方法对于样品的要求较高并且依赖于谱图库的大小。如果在谱图库中无法检索到一致的谱图,则可以用人工解谱的方法进行分析,这就需要有大量的红外知识及经验积累。大多数化合物的红外谱图是复杂的,即便是有经验的专家,也不能保证从一张孤立的红外谱图上得到全部分子结构信息,如果需要确定分子结构信息,就要借助其他的分析测试手段,如核磁、质谱、紫外光谱等。尽管如此,红外谱图仍是提供官能团信息最方便快捷的方法。近年来,利用计算机方法解析红外光谱,在国内外已有了比较广泛的研究,新的成果不断涌现,不仅提高了解谱的速度,而且成功率也很高。随着计算机技术的不断进步和解谱思路的不断完善,计算机辅助红外解谱必将对教学、科研的工作效率产生更加积极的影响。 红外光谱定量分析法的依据是朗伯——比尔定律。红外光谱定量分析法与其它定量分析方法相比,存在一些缺点,因此只在特殊的情况下使用。它要求所选择的定量分析峰应有足够的强度,即摩尔吸光系数大的峰,且不与其它峰相重叠。红外光谱的定量方法主要有直接计算法、工作曲线法、吸收度比法和内标法等,常常用于异构体的分析。随着化学计量学以及计算机技术等的发展,利用各种方法对红外光谱进行定量分析也取得了较好的结果,如最小二乘回归,相关分析,因子分析,遗传算法,人工神经网络等的引入,使得红外光谱对于复杂多组分体系的定量分析成为可能。量子力学研究表明,分子振动和转动的能量不是连续的,而是量子化的,即限定在一些分立的、特定的能量状态或能级上。以最简单的双原子为例,如果认为原子间振动符合简谐振动规律,则其振动能量Ev可近似地表示为:式中h为普朗克常数;v为振动量子数(取正整数);v0为简谐振动频率。当v=0时,分子的能量最低,称为基态。处于基态的分子受到频率为v0的红外射线照射时,分子吸收了能量为hv0的光量子,跃迁到第一激发态,得到了频率为v0的红外吸收带。反之,处于该激发态的分子也可发射频率为v0的红外射线而恢复到基态。v0的数值决定于分子的约化质量μ和力常数k。k决定于原子的核间距离、原子在周期表中的位置和化学键的键级等。分子越大,红外谱带也越多,例如含12个原子的分子,它的简正振动应有30种,它的基频也应有30条谱带,还可能有强度较弱的倍频、合频、差频谱带以及振动能级间的微扰作用,使相应的红外光谱更为复杂。如果假定分子为刚性转子,则其转动能量Er为:式中j为转动量子数(取正整数);i为刚性转子的转动惯量。在某些转动能级间也可以发生跃迁,产生转动光谱。在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。辅助解析有机化合物的结构鉴定在有机化学、生物化学、药物学、环境科学等许多领域越来越显示出它的重要性,而在各种鉴定手段中红外光谱以其方便灵敏的特性成为有机物结构鉴定的重要手段,除了它对分析结构特征反应灵敏这一特点外,红外光谱仪与计算机直接联机,也为引进一些与计算机科学有关的智能手段创造了条件。各种现代化的分析仪器的出现和广泛应用,使得在短时间内获得物质体系大量信息成为可能,这为化学计量学的数据挖掘研究提供了机遇。由光谱仪器记录下来的谱图中包含大量的结构信息,但是目前还不能实现复杂分子光谱谱图的直接计算,其解析主要还凭借经验,对一个不是长期从事结构鉴定的人来说,解析一张光谱谱图是一项很困难的工作。实际上,即使对不太复杂的分子,也难于指定所有杂原子所处的官能团和峰的归属,而依靠各种计算机检索系统也会受到各种限制,诸如谱图库中数据有限,或测定条件(仪器的类型、具体的实验条件等)与标准图谱所用的条件不同而造成各吸收峰位置的改变等。另外由于红外谱图极其复杂,构成化合物的原子质量不同,化学键的性质不同,原子的连接次序和空间位置的不同都会造成红外光谱的差别。这些都使红外光谱的解析复杂化。如果能由计算机学习和存储红外光谱知识,用计算机辅助完成解析谱图的工作,自然是一件很有意义的事。几十年以来,人们一直在探索将红外图谱的解析智能化。随着商品化红外光谱仪的计算机化,出现了许多计算机辅助红外光谱识别方法,这些方法大致可以分为三类:谱图检索系统、专家系统、模式识别方法。 谱图检索的主要优点是能够收集大量的光谱,只要根据未知物的光谱谱图就能识别化合物而无需其他数据(例如分子式等),它的程序也比较简单。但是它也有一些不可克服的缺点:首先,检索系统的能力与谱图库存储的化合物的数量成正比,我们不可能把自然界所有的化合物收集其中,谱图库的发展总是滞后于有机化学的发展。其次,光谱仪器随着技术的发展不断改进:波谱范围不断扩大,分辨率不断提高,低温技术得到应用,一些新仪器的出现,这就要求原有的谱图库要不断修改,而庞大的谱图库在短时间内是办不到的。由于检索方法的这些特点,决定了它不能作为结构鉴定的一种完整的手段。专家系统计算机辅助结构解析的另一种方法是专家系统。它所研究的领域包括:数学证明,程序编写,行为科学与心理学,生命科学与医学等。目前设计的专家系统解析谱图的一般方法是:在计算机里预先存储化学结构形成光谱的一些规律;由未知物谱图的一些光谱特征推测出未知物的一些假想结构式;根据存储规律推导出这些假想结构式的理论谱图,再将理论谱图与实验谱图进行对照,不断对假想结构式进行修正,最后得到正确的结构式。但是,目前分子中各种基团的吸收规律,主要还是通过经验或者人工获得。人工比较大量的已知化合物的红外谱图,从中总结出各种基团的吸收规律,其结果虽比较真实地反映了红外光谱与分子结构的对应关系,却不够准确,特别是这些经验式的知识难以用计算机处理,使计算机专家解析系统难以实用化。模式识别模式识别的发展是从五十年代开始的,就是用机器代替人对模式进行分类和描述,从而实现对事物的识别。随着计算机技术的普遍应用,处理大量信息的条件已经具备,模式识别在六十年代得到了蓬勃发展,并在七十年代初奠定了理论基础,从而建立了它自己独特的学科体系。模式识别已经应用到分析化学领域的有关方面,其中涉及最多的是分子光谱的谱图解析,在一些分类问题上获得了成功。Munk等于1990年首次将线性神经网络应用于红外光谱的子结构解析,把红外光谱的解析带入了一个全新的领域,从此引起红外光谱的计算机解析热潮。随后各种方法,如各种人工神经网络,偏最小二乘,信号处理方法如小波变换等逐步引入到红外光谱的计算机解析中,使模式识别在红外光谱的应用中得到很好的发展。Cabrol-Bass等使用了一个分等级的神经网络系统识别红外光谱的子结构。首先把10000个化合物光谱分为含苯环、含羟基、含羰基、含C-NH以及含C=C等5大类,随后把这几个类进行进一步分类,总共33个子结构。每一个下级网络使用上一级网络输出的结果。以3596~500 cm-1波段每12 cm-1取259个点作为神经网络的输入,输出为“1”和“0”,分别代表子结构存在和不存在。使用了含有一个隐含层30个节点的反向传播神经网络对每个子结构进行识别,对化合物作了全面但较为粗略的分类,涉及了数据库中一些常见化合物。这些研究中大部分利用神经网络对子结构进行识别,而对特定类别的化合物没有做深入研究,对化合物的特征吸收峰也没有深入的讨论。另外,其中应用最多的人工神经网络在识别子结构时,对结构碎片的预测准确度不是很高,且神经网络存在不稳定、容易陷入局部极小和收敛速度慢等问题。因此,近年来,人们一直在寻找一种更好的模式识别方法来进行红外光谱的结构解析。Vapnik等人于1995年在统计学习理论(Statistical Learning Theory, SLT)的基础上提出了支持向量机(Support vector machine, SVM),它根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,以期获得最好的泛化能力。SVM目前在化学中得到了一些较成功的应用,SVM可以较好的对红外光谱的子结构进行识别,与ANN相比,SVM还具有稳定以及训练速度快等优点,是一种很好的辅助红外光谱解析的工具。

红外光谱论文

我们的红外自动生成的也是SPA格式的文件。因为我们电脑没装那软件,所以不能直接打开SPA文件。但我们做完后还会另存为别的其它格式,如xls,这样方便拷回去处理!

同求

spa是另外一种Flash格式,目前网络上常见的是swf文件。 可以用Flash5或者其它的修改flash的软件打开。

红外分光光度法 infrared spectrophotometry 通常指2~50 波长范围(波数为4 000~200cm-1)的中红外区的吸收光谱分析法。物质在红外光照射下选择性地吸收其中与分子振动、转动频率相同的红外线,而形成一些吸收谱带,称为红外光谱。不同结构的分子具有不同的振动能级,因而出现代表分子结构的各不相同的特征红外光谱,由此可进行分子的定性与定量分析。有机物中大多数基团相对独立地在红外光谱的一定频率范围内出现其特征吸收峰,从而可鉴定分子中的基团。广泛用于制药、染料、石油、高分子、半导体及环境中有机污染物的分析鉴定。

红外光谱仪的论文

试析《董卿主持风格》中央电视台的节目主持人,多年以来一直被各地的媒体公认为效仿的楷模,或者是追求的方向。可是就像萝卜青菜一样,央视的主持人风格不同,各有特点。而我则偏爱青菜的清新,喜欢即时尚又不乏营养的综艺节目主持人,这几年央视的领军人物当然就非董卿莫数了。 在观众的印象中董卿是一位专业的晚会节目主持人,大方得体,气质稳重,穿着成熟又不失风尚,在央视各套电视台的综艺节目中频频出现,成为中国观众最熟悉的主持人之一。我认为,央视的主持人从杨澜开始是我比较有印象的了,然后是倪萍,再后是周涛,一直到现在的董卿。除了董卿具有年龄优势以外,能在如此激烈的竞争与淘汰中站住脚,一定要有自己的特色。回头看,第一届比较著名的正大综艺主持人杨澜,当时的主持特点是比较阳光和知性。她一再证明着她被观众所喜爱。之后的倪萍,鲜明对比,主要是成熟稳重和亲切感强,易于带动现场气氛。经常用真情感染观众,把观众搞得眼泪汪汪,瞬时让观众耳目一新,也证明她获得了大多数观众的喜爱,可是这一特点,也有少数观众渐渐产生反感,随着时间的增长,观众们觉得这种过于煽情的主持风格已经看够看累了,需要新鲜血液。周涛正是当时观众眼中的新鲜血液,她外表时尚,和轻松干练的主持风格,正和大众的胃口,主持节目的时候,废话很少,语言干练,精巧。着实吸引了观众的眼球。而董卿,在我看来,她聪明的具备了以上三位的所有特点于自身,知性,时尚,又善于对着镜头抒发自身情感的她,在各种场合应变及时,大方得体,并且懂得看场合随时变换风格。比如《青歌大赛》时,她会让自己尽量轻松一些,和紧张的参赛选手形成对比,同时又可以缓和选手的情绪,却把握分寸不会因为自己的轻松,影响到赛场的严肃气氛,这里可以看见杨澜的知性。而《欢乐中国行》,正是一个半分百的娱乐节目,董卿拿出了自己一切的开朗活泼,尽量做到时尚又亲切,在台上表现活跃,却不像其他地方台的节目主持人在台上乱来,这里有一点周涛的时尚又精巧。我曾经还多次看过董卿主持的慈善类节目,比如说最近的《为了母亲的微笑》是一场为了灾区贫困儿童捐款的晚会。我想她有些效仿了倪萍的本事,在描述灾区儿童生活状态时动了真情,而感动了在场和电视机前的所有观众。而超越倪萍的是,恰到好处的只让眼泪在眼圈里打转。(这点是真本事!)另外,董卿的穿着时尚得体,身材苗条,所以在视觉上经常给人耳目一新的感觉,基本功扎实,虽然是上海人,但吐字归音非常清楚,是我最需要学习的,基本功是最最重要的,让观众听清楚,听明白是基本。因此在各种场合,她都可以展现她优秀的功底。这是我对董卿的基础了解,我印象中她没有出过书,所以了解不足,请师傅指正!

推荐到OA图书馆查询。输入英文关键词即可。

基本工作原理:用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物的类型和结构IR光谱主要是定性技术,但是随着比例记录电子装置的出现,也能迅速而准确地进行定量分析特点和主要用途:一般的红外光谱是指5-50微米(对应波数4000--200厘米-1)之间的中红外光谱,这是研究研究有机化合物最常用的光谱区域红外光谱法的特点是:快速,样品量少(几微克-几毫克),特征性强(各种物质有其特定的红外光谱图),能分析各种状态(气,液,固)的试样以及不破坏样品红外光谱仪是化学,物理,地质,生物,医学,纺织,环保及材料科学等的重要研究工具和测试手段,而远红光谱更是研究金属配位化合物的重要手段 红外分光光度计在有机分析方面的应用在有机分析方面的应用化合物中各原子团组合排列情况,是同红外光谱中出现的特征官能团来确定的 (1)溴化四氯化对位甲酚的结构,过去实验认为它有三种可能的结构,但未能鉴别确定,现经过红外光谱证实只有一种结构 (2)二分子醛缩合醇酮,应为(I)式若(I)式R换成吡啶基,则化学性质和(I)却不相同了,它具有烯二醇式的反应如(II)式可是在极烯的溶液中,也看不到自由羟基的3700cm(-1)-谱带,却在2750cm(-1)有缔全氢键出现可知它已形成了分子内氢键 (I)羟酮式 (II)烯二醇式 异构体的测定——可鉴定立体异构体和同分异构体 (1)顺反异体的测定——顺反异构体原子团排列顺序因无对称中心,故C=C双键在1630cm(-1),724cm(-1),而反式的C=C在较高频率 (2)同分异构体的鉴定——红外光谱900~660cm(-1)区内可看到苯环取代位置不同的同分体如二甲苯三个异构体的吸收谱带很不相同邻位在742cm(-1),间位在770cm(-1),对位在 800cm(-1),且因对二甲苯对称性强,它的C=C双键(苯骨架)在1500cm(-1)变小,并且600cm(-1)谱带消失 又如正丙基,异丙基,叔丁基由红外光谱中的甲基弯曲振动可以看出在1375cm(-1)只出现一个吸收带,则表示为正丙基;若在1375cm(-1)出现相等强度的双峰,则为异丙基;若在`1390cm(-1)及1365cm(-1)出现一强一弱谱带,则为叔丁基 乙醇和甲醚的分子式完全相同C2H6O,乙醇有羟基吸收带在3500cm(-1),C-0伸缩振动在1050~1250cm(-1),羟基弯曲振动在950cm(-1)甲醚在3500cm(-1)无羟基吸收它的第一强1150~1250cm(-1),这两个同分异构体很容易区别 化学反应的检查——一个化学反应是否已进行完全,可用红外光谱检查,这是因原料和预期的产品都有其特征吸收带 例如氧化仲醇为酮时,原料仲醇的羟基吸收应消失,酮的羰基171cm(-1)应在产物中出现才反应进行完全 未知物剖析——可先将未知物分离提纯,作元素分析,写出分子式,计算不饱和度从红外光谱可得到此未知物主要官能团的信息,确定它是属于哪种化合物结合紫外,核磁等可鉴定此化合物的结构

反正我做过很多红外都没没做过,也没见过,听都没听过。。。redfoxwenfan(站内联系TA)红外能进行定量分析,需要一些标准样品来编制宏,塑料里面的成分分析经常用到红外光谱来定性和定量,扫描样品谱图后,运行宏即可得到各种成分的含量,另外提醒你,红外定量并不是一个非常准确的结果,如果你的要求不是很搞,才可以考虑jack2070(站内联系TA)貌似用IR 做定量比较稀奇alumnium(站内联系TA)红外可以定量,定量的依据是郎博-比尔定律。pinguo(站内联系TA)可以做定量,但是条件比较的苛刻。MENG_ML(站内联系TA)很麻烦 做定量lcazzapple(站内联系TA)IR当然能做定量,很稀奇么?ypf13(站内联系TA)红外定量,关键的问题是仪器! 用普通的红外光谱,做透射,定量当然不准 但是用在线红外光谱仪,根据衰减全反射的原理,是可以定量的 现在都有正规的仪器出来了,梅特勒就卖,别的厂家也有,自己在网上查查吧 当然了,用普通的光谱仪做全反射,定量同样也不准yanjin_jia(站内联系TA)我见过浙大做PU的定量 第60 卷第2 期 化工学报 Vol160 No12 2009 年2 月 CIESC Journal February 2009 研究论文水性聚氨酯的原位细乳液聚合规律( Ⅰ) 加聚/ 水解反应的竞争 詹晓力, 石莹, 张庆华, 陈丰秋 (浙江大学联合化学反应工程研究所, 浙江杭州310027) 摘要: 采用异佛尔酮二异氰酸酯( IPDI) 与憎水性二醇进行原位细乳液聚合制备水性聚氨酯, 根据已建立的 FTIR 定量分析方法来表征聚合产物结构, 通过产物中氨酯键/ 脲键的浓度比来研究主反应(加聚) 与副反应 (水解) 的竞争。考察了憎水性二醇、乙烯基单体、反应温度、催化剂和乳化剂等因素对主副反应竞争情况的影 响, 并建立细乳液中加聚与水解反应竞争的物理模型。研究发现, 二醇的反应活性越高越有利于加聚反应; 乙 烯基单体的引入能够抑制水解反应, 促进加聚反应, 而且其水溶性越小, 加聚反应更容易在竞争中占优势; 降 低反应温度和增加催化剂浓度可促进加聚反应, 抑制水解反应。 关键词: 聚氨酯; 细乳液; 异佛尔酮二异氰酸酯; 水解反应 Shi Ying , Zhan Xiaoli , Luo Zhenhuan , Zhang Qinghua , Chen Fengqiu1 Quantitative IR characterization of urea 你能说IR能想UV一样常规地用来定量?真是搞笑。特别是固体压片的,进行定量可行么?hubin306(站内联系TA)恩。有道理啊 。红外基本就是拿来看看成分的。。。

红外光谱仪论文

推荐到OA图书馆查询。输入英文关键词即可。

基本工作原理:用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收一定频率的红外线,把分子吸收的红外线的情况用仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物的类型和结构IR光谱主要是定性技术,但是随着比例记录电子装置的出现,也能迅速而准确地进行定量分析特点和主要用途:一般的红外光谱是指5-50微米(对应波数4000--200厘米-1)之间的中红外光谱,这是研究研究有机化合物最常用的光谱区域红外光谱法的特点是:快速,样品量少(几微克-几毫克),特征性强(各种物质有其特定的红外光谱图),能分析各种状态(气,液,固)的试样以及不破坏样品红外光谱仪是化学,物理,地质,生物,医学,纺织,环保及材料科学等的重要研究工具和测试手段,而远红光谱更是研究金属配位化合物的重要手段 红外分光光度计在有机分析方面的应用在有机分析方面的应用化合物中各原子团组合排列情况,是同红外光谱中出现的特征官能团来确定的 (1)溴化四氯化对位甲酚的结构,过去实验认为它有三种可能的结构,但未能鉴别确定,现经过红外光谱证实只有一种结构 (2)二分子醛缩合醇酮,应为(I)式若(I)式R换成吡啶基,则化学性质和(I)却不相同了,它具有烯二醇式的反应如(II)式可是在极烯的溶液中,也看不到自由羟基的3700cm(-1)-谱带,却在2750cm(-1)有缔全氢键出现可知它已形成了分子内氢键 (I)羟酮式 (II)烯二醇式 异构体的测定——可鉴定立体异构体和同分异构体 (1)顺反异体的测定——顺反异构体原子团排列顺序因无对称中心,故C=C双键在1630cm(-1),724cm(-1),而反式的C=C在较高频率 (2)同分异构体的鉴定——红外光谱900~660cm(-1)区内可看到苯环取代位置不同的同分体如二甲苯三个异构体的吸收谱带很不相同邻位在742cm(-1),间位在770cm(-1),对位在 800cm(-1),且因对二甲苯对称性强,它的C=C双键(苯骨架)在1500cm(-1)变小,并且600cm(-1)谱带消失 又如正丙基,异丙基,叔丁基由红外光谱中的甲基弯曲振动可以看出在1375cm(-1)只出现一个吸收带,则表示为正丙基;若在1375cm(-1)出现相等强度的双峰,则为异丙基;若在`1390cm(-1)及1365cm(-1)出现一强一弱谱带,则为叔丁基 乙醇和甲醚的分子式完全相同C2H6O,乙醇有羟基吸收带在3500cm(-1),C-0伸缩振动在1050~1250cm(-1),羟基弯曲振动在950cm(-1)甲醚在3500cm(-1)无羟基吸收它的第一强1150~1250cm(-1),这两个同分异构体很容易区别 化学反应的检查——一个化学反应是否已进行完全,可用红外光谱检查,这是因原料和预期的产品都有其特征吸收带 例如氧化仲醇为酮时,原料仲醇的羟基吸收应消失,酮的羰基171cm(-1)应在产物中出现才反应进行完全 未知物剖析——可先将未知物分离提纯,作元素分析,写出分子式,计算不饱和度从红外光谱可得到此未知物主要官能团的信息,确定它是属于哪种化合物结合紫外,核磁等可鉴定此化合物的结构

反正我做过很多红外都没没做过,也没见过,听都没听过。。。redfoxwenfan(站内联系TA)红外能进行定量分析,需要一些标准样品来编制宏,塑料里面的成分分析经常用到红外光谱来定性和定量,扫描样品谱图后,运行宏即可得到各种成分的含量,另外提醒你,红外定量并不是一个非常准确的结果,如果你的要求不是很搞,才可以考虑jack2070(站内联系TA)貌似用IR 做定量比较稀奇alumnium(站内联系TA)红外可以定量,定量的依据是郎博-比尔定律。pinguo(站内联系TA)可以做定量,但是条件比较的苛刻。MENG_ML(站内联系TA)很麻烦 做定量lcazzapple(站内联系TA)IR当然能做定量,很稀奇么?ypf13(站内联系TA)红外定量,关键的问题是仪器! 用普通的红外光谱,做透射,定量当然不准 但是用在线红外光谱仪,根据衰减全反射的原理,是可以定量的 现在都有正规的仪器出来了,梅特勒就卖,别的厂家也有,自己在网上查查吧 当然了,用普通的光谱仪做全反射,定量同样也不准yanjin_jia(站内联系TA)我见过浙大做PU的定量 第60 卷第2 期 化工学报 Vol160 No12 2009 年2 月 CIESC Journal February 2009 研究论文水性聚氨酯的原位细乳液聚合规律( Ⅰ) 加聚/ 水解反应的竞争 詹晓力, 石莹, 张庆华, 陈丰秋 (浙江大学联合化学反应工程研究所, 浙江杭州310027) 摘要: 采用异佛尔酮二异氰酸酯( IPDI) 与憎水性二醇进行原位细乳液聚合制备水性聚氨酯, 根据已建立的 FTIR 定量分析方法来表征聚合产物结构, 通过产物中氨酯键/ 脲键的浓度比来研究主反应(加聚) 与副反应 (水解) 的竞争。考察了憎水性二醇、乙烯基单体、反应温度、催化剂和乳化剂等因素对主副反应竞争情况的影 响, 并建立细乳液中加聚与水解反应竞争的物理模型。研究发现, 二醇的反应活性越高越有利于加聚反应; 乙 烯基单体的引入能够抑制水解反应, 促进加聚反应, 而且其水溶性越小, 加聚反应更容易在竞争中占优势; 降 低反应温度和增加催化剂浓度可促进加聚反应, 抑制水解反应。 关键词: 聚氨酯; 细乳液; 异佛尔酮二异氰酸酯; 水解反应 Shi Ying , Zhan Xiaoli , Luo Zhenhuan , Zhang Qinghua , Chen Fengqiu1 Quantitative IR characterization of urea 你能说IR能想UV一样常规地用来定量?真是搞笑。特别是固体压片的,进行定量可行么?hubin306(站内联系TA)恩。有道理啊 。红外基本就是拿来看看成分的。。。

1 材料与仪器TG16高速离心机(19310 g,长沙英泰仪器有限公司);UV?2000紫外可见分光光度计(尤尼柯上海仪器厂); vertex 70型红外光谱仪(德国Bruker公司);AM?3250B型磁力搅拌恒温器(天津奥特赛恩斯仪器有限公司)。介孔分子筛SBA?15的合成利用表面活性剂Pouronic P123(EO20PO70EO20, 美国Aldrich公司)为模板剂,以浓HCl( 35%~37%)为催化剂,通过对正硅酸乙酯(Si(OC2H5)4, TEOS, 0%,日本Junsei Chemical公司)的分解和硅缩聚反应后而得到。编号Lu001和LLSD1的介孔分子筛合成方法基本相同,原料量略有不同,二者的BET比表面积762 m2/g,孔容87 cm3/g,孔径18 nm,壁厚55 nm。柱状假丝酵母脂肪酶(candida rogusa lipase, CRL)购自日本Amano酶技术公司;BCA蛋白定量试剂盒购自美国Pierce公司。实验用水为二次蒸馏水。2 傅立叶变换红外(FT?IR)测试样品和KBr在115 ℃下抽真空烘干10 h。将300 mg KBr和2 mg样品在研钵中混合研磨成细粉后压片,干燥后立刻置于红外光谱仪的石英原位池中测试。仪器分辨率为2 cm-1,扫描波数范围4000~400 cm-1,扫描128次。3 CRL在SBA?15上的固定化将CRL磷酸盐缓冲溶液(pH 0)以3000 r/min离心15 min,收集上清液,得原酶溶液。将适量SBA?15放入原酶溶液中,在15 ℃水浴和150~200 r/min下搅拌吸附21 h,再以10000 r/min下离心15 min,收集上清液为吸余液。用磷酸盐缓冲溶液清洗分子筛4次以洗脱疏松附着的酶,洗脱液再以10000 r/min离心15 min,取出上清液为清洗液。测定原酶溶液、吸余液和清洗液的酶蛋白含量,根据物料衡计算得出酶蛋白固定量(immobilized amount of enzyme protein, mg),取单位质量分子筛的酶蛋白固定量为载酶量(enzyme loading, mg/g)。4 固定化CRL的泄漏将上述载酶SBA?15移入70 mL磷酸盐缓冲溶液中,在15 ℃水浴、以150~200 r/min搅拌并定时取样,样品再以10000 r/min离心15 min,分析上清液中的酶蛋白泄漏量。5 蛋白质定量方法分别用单波长紫外分光光度法、双波长紫外分光光度法和BCA法测定样品蛋白质含量。单波长紫外法公式为:C(protein)(g/L) =F×A280×D/d,式中A280为280 nm波长处吸光度,D为溶液稀释倍数,d为石英比色皿厚度(cm),F为校正因子。双波长紫外法Warburg?Christian公式为:C(protein)(g/L)=55A280-76A260; Lowry?Kalckar公式为:C(protein)(g/L)=45A280-74A260,式中A260和A280分别为260 和280 nm紫外波长下的吸光度。BCA法参照美国Pierce公司蛋白定量方法测定。 分 析 化 学第37卷第8期尚 雁等:介孔分子筛SBA?15的脂肪酶固定量分析测定 1 蛋白质定量方法对比图1表明不同浓度CRL溶液在260~280 nm均有一个较强的吸收峰,该吸收峰为蛋白质芳香族氨基酸的特征峰,用于蛋白质含量测定。将粗酶浓度为6 g/L的CRL溶液进行不同倍数稀释,得到一系列相对浓度已知的酶溶液,分别用单波长和双波长紫外法以及BCA法测定酶浓度,验证所测浓度比例关系是否符合其相对浓度,由此得出各检测方法的准确度。图2结果说明BCA法测定结果与样品稀释后的相对浓度最接近,双波长紫外法测定值与BCA法接近,单波长法测定结果远高于BCA法和双波长紫外法。由表1中的相对浓度计算结果可知,BCA法的相对误差最小,单波长和双波长紫外法的相对误差较大。这是因为BCA法的原理是以工作试剂CuSO4中的Cu2+螯合蛋白质分子,发生显色反应测试吸光度,因此抗干扰能力较强,准确度较高。紫外分光光度法操作步骤少,简单快捷,不用显色试剂,不消耗样品。但是,直接检测光密度值受溶液中杂质干扰影响较大,误差较大。为考察介孔分子筛对吸光度的影响,分别在3 mL蒸馏水中加入1, 6和9 mg SBA?15(编号Lu001),以蒸馏水为参比样,测定其吸光度,并计算出可能对蛋白质测定产生的浓度值偏差。表2说明SBA?15有明显紫外吸收。为此,本实验的样品溶液以10000 r/min离心,以消除介孔分子筛对吸光度的干扰。表1 不同方法测定蛋白质浓度的结果表2 SBA?15对吸光度的影响 表3为不同定量方法测定的 SBA?15(编号为Lu001)对CRL的固定量,3次平行实验的初始粗酶浓度均为6 g/L,SBA?15载体用量均为36 g,双波长紫外法测定结果略高于BCA法; 单波长紫外法测定结果远高于双波长法和BCA法。表3还说明BCA法的精密度高于单波长与双波长紫外法,这是因为BCA法靠显色反应测试吸光度,灵敏度较高,且介孔分子筛不参与显色反应,抗干扰能力较强,重现性好,更适合介孔分子筛载体的酶固定量和酶泄露量的测试;紫外分光光度法受溶液中杂质和残留介孔分表3 SBA?15上的CRL固定量及载酶量◆: 固定量(amount of immobilized protein); ◇: 载酶量(enzyme loading)子筛干扰较大。由于双波长紫外法测定的酶固定量结果与BCA法较接近,若实验条件有限或者为了不消耗样品且干扰因素较少,可使用双波长紫外法来代替BCA法测定酶固定量,每个样品中的介孔分子筛干扰可通过物料衡算而抵消。2 不同初始酶浓度时BSA?15载体上的酶固定量利用BCA法测定不同初始酶浓度条件下LLSD1对CRL的固定量,图3表明当酶浓度较低时,SBA?15载体对CRL的固定量和载酶量随酶浓度的增加而线性增加,但是当酶蛋白浓度达到约29 g/L(粗酶浓度约1 g/L)时固定量和载酶量达到平稳,最大载酶量为2 mg/g。3 两种SBA?15载体的酶固定量在初始酶浓度均为2 g/L、分子筛用量均为12 g相同条件下,LLSD1和Lu001对CRL的固定图4 LLSD1(a)和Lu001(b)的SEM电镜照片F4 SEM images of LLSD1(a) and Lu001(b)量分别为70和00 mg;载酶量分别为2和6 mg/g。可见,LLSD1的固定量及载酶量远大于Lu001。图4为LLSD1和Lu001的SEM电镜照片,可见二者外观形状基本相同,均属于SBA?15的传统形状[9],二者大小也无明显区别。图5是LLSD1和Lu001的FT?IR谱图,从图中可看出LLSD1表面上的羟基基团数量大于Lu001。由于酶的吸附是酶和介孔材料表面上的羟基通过氢键作用完成的,介孔分子筛表面上的羟基通过氢键作用可以促进对酶的吸附[10]。因此, 图5 Lu001(1)和LLSD1(2)的FT?IR谱图F5 FT?IR spectra of Lu001(1) and LLSD1(2)两种介孔分子筛对酶固定量差异很可能与介孔分子筛的羟基含量有关,具有较高羟基含量有利于固定更多的CRL。4 SBA?15固定化酶的泄漏量固定化酶容易“脱落”到水相中成为游离酶,即“泄漏”[11]。图6表明Lu001固定化CRL在缓冲溶液中100 h后的泄漏率为56%,LLSD1的泄漏率为53%,泄露量均较低,说明SBA?15是良好的酶固定化载体。泄露率较低可能与SBA?15孔径大小有关。研究[3,12]表明, 当介孔材料的孔径与酶分子大小相适应时,固定化酶的稳定性较好。Lu001和LLSD1的孔径均为18 nm,假丝酵母脂肪酶的动力学直径约为5 nm,二者大小较匹配,使酶分子恰好固定于孔内而不易发生泄露。◆,■,▲,● 为泄露量(leakage); ◇,口,△,○为泄露率(leakage rate),其中◆, ◇ : 12 g LLSD1, 载酶量(enzyme loading) 2 mg/g; ■,口: 24 g LLSD1, 载酶量(enzyme loading) 3 mg/g;▲, △: 36 g Lu001, 载酶量(enzyme loading) 2 mg/g;●,○: 36 g Lu001, 载酶量(enzyme loading) 6 mg/g。 1 Lei C, Shin Y, Liu J, Ackerman E J Journal of the American Chemical Society, 2002, 124: 11242~112432 Lei J, Fan J, Yu C Z, Zhang L Y, Jiang S Y, Tu B, Zhao D Y Microporous and Mesoporous Materials, 2004, 73: 121~1283 Essa H, Magner E, Cooney J, Hodnett B K Journal of Molecular Catalysis B: Enzymatic, 2007, 49: 61~684 Rosales?Herńandez M C, Mendieta?Wejebe J E, Correa?Basurto J, Vázquez?Alcantara J I, Terres?Rojas E, Trujillo?Ferrara J International Journal of Biological Macromolecules, 2007, 40: 444~4485 Gao Bo(高 波), Zhu Guang?Shan(朱广山), Fu Xue?Qi(付学奇), Xin Ming?Hong(辛明红), Chen Jing(陈 静), Wang Chun?Lei(王春雷), Qiu Shi?Lun(裘式纶) C J Chinese Universities(高等学校化学学报), 2005, 26(10): 1852~18546 Humphrey H P Y, Wright P A, Botting N P Microporous and Mesoporous M 2001, 44?45: 763~7687 He J, Xu Y, Ma H Journal of Colloid and Interface Science, 2006, 298: 780~7868 Xu Jian(徐 坚), Yang Li?Ming(杨立明), Wang Yu?Jun(王玉军), Luo Guang?Sheng(骆广生), Dai You?Yuan(戴猷元) Journal of Chemical Industry and Engineering(China)(化工学报), 2006, 10(57): 2407~24109 Zhao D Y, Feng J L, Huo Q S, Nicholas M, Fredrickson G H, Chmelka B F, Stueky G D Science, 1998, 279: 548~55210 Zheng L Y, Zhang S Q, Zhao L F, Zhu G S, Yang X Y, Gao G, Cao S G Journal of Molecular Catalysis B:Enzymatic, 2006, 38: 119~12511 Zhu Y F, Shen W H, Dong X P, Shi J L Journal of Materials Research, 2005, 20: 2682~269012 Diaz J F, Balkus K J Journal of Molecular Catalysis B: Enzymatic, 1996, 2: 115~126

相关百科

热门百科

首页
发表服务