首页

> 论文期刊知识库

首页 论文期刊知识库 问题

关于细胞学的论文

发布时间:

关于细胞学的论文

生物按其结构来分,就分为三种类型,一是由真核细胞构成的真核生物;二是由原核细胞来构成的原核生物;三是没有细胞结构的病毒。所以没有细胞结构的生物就只有病毒了。 其实病毒是一个大的范围,它还包括一个分支——亚病毒(如朊病毒就是属于亚病毒的一类),亚病毒就是比病毒结构更简单的生物。但如果从宏观来讲,也把亚病毒划在病毒学的范畴。所以对于高中生物知识来说,除了病毒外,其它的生物都是由细胞来构成的了(包括真核和原核)。 在光学显微镜下观察植物的细胞,可以看到它的结构分为下列四个部分(图3-1-1)。细胞壁 位于植物细胞的最外层,是一层透明的薄壁。它主要是由纤维素组成的,孔隙较大,物质分子可以自由透过。细胞壁对细胞起着支持和保护的作用。 细胞膜 细胞壁的内侧紧贴着一层极薄的膜,叫做细胞膜。这层由蛋白质分子和脂类分子组成的薄膜,水和氧气等小分子物质能够自由通过,而某些离子和大分子物质则不能自由通过,因此,它除了起着保护细胞内部的作用以外,还具有控制物质进出细胞的作用:既不让有用物质任意地渗出细胞,也不让有害物质轻易地进入细胞。 细胞膜在光学显微镜下不易分辨。用电子显微镜观察,可以知道细胞膜主要由蛋白质分子和脂类分子构成。在细胞膜的中间,是磷脂双分子层,这是细胞膜的基本骨架。在磷脂双分子层的外侧和内侧,有许多球形的蛋白质分子,它们以不同深度镶嵌在磷脂分子层中(图3-1-2),或者覆盖在磷脂分子层的表面。这些磷脂分子和蛋白质分子大都是可以流动的,可以说,细胞膜具有一定的流动性。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。细胞质 细胞膜包着的黏稠透明的物质,叫做细胞质。在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。绿色植物的光合作用就是在叶绿体中进行的。在细胞质中,往往还能看到一个或几个液泡,其中充满着液体,叫做细胞液。在成熟的植物细胞中,液泡合并为一个中央液泡,其体积占去整个细胞的大半。 细胞质不是凝固静止的,而是缓缓地运动着的。在只具有一个中央液泡的细胞内,细胞质往往围绕液泡循环流动,这样便促进了细胞内物质的转运,也加强了细胞器之间的相互联系。细胞质运动是一种消耗能量的生命现象。细胞的生命活动越旺盛,细胞质流动越快,反之,则越慢。细胞死亡后,其细胞质的流动也就停止了。 除叶绿体外,植物细胞中还有一些细胞器,它们具有不同的结构,执行着不同的功能,共同完成细胞的生命活动。这些细胞器的结构需用电子显微镜观察。在电镜下观察到的细胞结构称为亚显微结构(图3-1-3)。线粒体 呈线状、粒状,故名。在线粒体上,有很多种与呼吸作用有关的颗粒,即多种呼吸酶。它是细胞进行呼吸作用的场所,通过呼吸作用,将有机物氧化分解,并释放能量,供细胞的生命活动所需,所以有人称线粒体为细胞的“发电站”或“动力工厂”。 内质网 内质网是细胞质中由膜构成的网状管道系统。它与细胞膜相通连,对细胞内蛋白质等物质的合成和运输起着重要作用。 核糖体 核糖体是一种颗粒状小体,多存在于内质网膜的外表面,是合成蛋白质的重要基地。 中心体 中心体存在于动物细胞和某些低等植物细胞中,因为它的位置靠近细胞核,所以叫中心体。 中心体与细胞的有丝分裂有密切关系。 细胞核 细胞质里含有一个近似球形的细胞核,是由更加黏稠的物质构成的。细胞核通常位于细胞的中央,成熟的植物细胞的细胞核,往往被中央液泡推挤到细胞的边缘。细胞核中有一种物质,易被洋红、苏木精等碱性染料染成深色,叫做染色质。生物体用于传种接代的物质即遗传物质,就在染色质上。当细胞进行有丝分裂时,染色质就变化成染色体。多数细胞只有一个细胞核,有些细胞含有两个或多个细胞核,如肌细胞、肝细胞等。细胞核可分为核膜、染色质、核液和核仁四部分。核膜与内质网相通连,染色质位于核膜与核仁之间。染色质主要由蛋白质和DNA组成。DNA是一种有机物大分子,又叫脱氧核糖核酸,是生物的遗传物质。在有丝分裂时,染色体复制,DNA也随之复制为两份,平均分配到两个子细胞中,使得后代细胞染色体数目恒定,从而保证了后代遗传特性的稳定。 动物细胞与植物细胞相比较,具有很多相似的地方,如动物细胞也具有细胞膜、细胞质、细胞核等结构。但是动物细胞与植物细胞又有一些重要的区别,如动物细胞的最外面是细胞膜,没有细胞壁;动物细胞的细胞质中不含叶绿体,也不形成中央液泡(图3-1-4)。 总之,不论是植物还是动物,都是由细胞构成的。细胞是生物体结构和功能的基本单位自己找一部分吧

从细胞的类型,作用,功能,深入阐述,最好有自己独特的见解,再联系现实生活谈,也可以写些细胞间的相互协作,怎样共同完成各项生命活动的。选取一些作用独特的细胞写,更吸引人!

吗的,五百字写论文。。。有没有搞错

关于干细胞的论文

研究的目的要说明问题是如何发现的,即该研究的研究背景是什么,是根据什么、受什么启发而搞这项研究。也要说明该选题在理论上的创新性,来突出自己选题与各个主流观点的差异。而研究的意义,要对所研究问题的实际用处有所了解从生活实际出发进行解读。

干细胞的用途非常广泛,涉及到医学的多个领域。目前,科学家已经能够在体外鉴别、分离、纯化、扩增和培养人体胚胎干细胞,并以这样的干细胞为“种子”,培育出一些人的组织器官。干细胞及其衍生组织器官的广泛临床应用,将产生一种全新的医疗技术,也就是再造人体正常的甚至年轻的组织器官,从而使人能够用上自己的或他人的干细胞或由干细胞所衍生出的新的组织器官,来替换自身病变的或衰老的组织器官。假如某位老年人能够使用上自己或他人婴幼儿时期或者青年时期保存起来的干细胞及其衍生组织器官,那么,这位老年人的寿命就可以得到明显的延长。美国《科学》杂志于1999年将干细胞研究列为世界十大科学成就的第一,排在人类基因组测序和克隆技术之前。 新加坡国立大学医院和中央医院通过脐带血干细胞移植手术,根治了一名因家族遗传而患上严重的地中海贫血症的男童,这是世界上第一例移植非亲属的脐带血干细胞而使患者痊愈的手术。医生们认为,脐带血干细胞移植手术并不复杂,就像给患者输血一样。由于脐带血自身固有的特性,使得用脐带血干细胞进行移植比用骨髓进行移植更加有效。现在,利用造血干细胞移植技术已经逐渐成为治疗白血病、各种恶性肿瘤放化疗后引起的造血系统和免疫系统功能障碍等疾病的一种重要手段。科学家预言,用神经干细胞替代已被破坏的神经细胞,有望使因脊髓损伤而瘫痪的病人重新站立起来;不久的将来,失明、帕金森氏综合症、艾滋病、老年性痴呆、心肌梗塞和糖尿病等绝大多数疾病的患者,都可望借助干细胞移植手术获得康复。 同胚胎干细胞相比,成人身体上的干细胞只能发育成20多种组织器官,而胚胎干细胞则能发育成几乎所有的组织器官。但是,如果从胚胎中提取干细胞,胚胎就会死亡。因此,伦理道理问题就成为当前胚胎干细胞研究的最大问题之一。美国政府明确反对破坏新的胚胎以获取胚胎干细胞,美国众议院甚至提出全面禁止胚胎干细胞克隆研究的法案。美国的一些科学家则对此提出了尖锐的批评,他们认为,将干细胞用于医学研究,在减轻患者痛苦方面很有潜力。如果浪费这样一个绝好的机会,结果将是悲剧性的。 我国的干细胞研究和应用已经具备了一定的基础,早在20世纪60年代就开始了骨髓干细胞移植方面的研究,目前研究和应用得最多的是造血干细胞。1992年,我国内地第一个骨髓移植非亲属供者登记组在北京成立,“中华骨髓库”也正式接受捐赠。2002年,北京建立了脐带血干细胞库。关于胚胎干细胞的研究,我国目前还没有明确的法律规定。

我08年大学毕业,以前我理解你,但是现在我不这么认为了。

关于细胞的文献

不同种类或同一种类的不同组织因其细胞结构及所含的成分不同,分离方法也有差异。在提取某种特殊组织的dna时必须参照文献和经验建立相应的提取方法,以获得可用的dna大分子。尤其是组织中的多糖和酶类物质对随后的酶切、pcr反应等有较强

1665年 罗伯特·胡克(Robert Hooke,1635—1703)是英国著名的物理学家、生物学家。 胡克于1635年7月18日出生于英格兰怀特岛弗雷什沃特村的一个牧师家庭。幼年时他常常头痛,经常辍学。小时候,他喜欢摆弄钟表和机械玩具,练就了一双巧手。1648年,胡克的父亲去世,威斯敏斯特中学校长巴斯比收留了他。在那里他学习拉丁文、希腊文、希伯来文和数学,同时学习演奏风琴。1653年,胡克从威斯敏斯特中学毕业后移居牛津,当上基督教堂的合唱队员。 1655年,胡克成为威利斯的助手,后为玻意耳的助手。1660年牛津学术团体迁往伦敦,1662年正式命名为英国皇家学会,胡克被任命为该学会的实验管理员。1663年,他获牛津大学文学硕士学位,并被选为英国皇家学会会员。1664年,他任格雷沙姆学院力学讲师,并任英国皇家学会珍宝馆馆长。1665年他担任格雷沙姆学院几何学教授。1666年,伦敦大火后,他担任监督伦敦重建的测量员。1677—1683年他任英国皇家学会秘书。 玻意耳、马略特定律的发现者之一玻意耳曾是胡克的雇主。胡克对玻意耳研究用的空气泵进行了改进,这样玻意耳才得以成功。1662年玻意耳发表的关于空气压力的玻意耳定律中凝集着胡克的智慧。 1658年,胡克提出可以用弹力代替重力使物体振动,即在平衡轮的轴上安一个弹簧,可以代替重力驱动摆轮,这是现代钟表设计的基本原理。根据这个原理制造的确定经度的航海时针到18世纪才出现。1660年,胡克为此申请了专利,但后来又撤回申请。 1662年,胡克担任英国皇家学会的实验管理员,使他的聪明才智充分展示出来。他要为每周的会议提供3~4个有重要意义的实验,同时,还必须随时对会员们提出的想法作出实验验证。 1665年,罗伯特·胡克根据一会员提供的资料设计了结构相当复杂的显微镜。有一次,他切了一块软木薄片,放在自己制造的显微镜下观察,发现软木片是由很多小室构成的,各个小室之间都有壁隔开,像蜂房似的。胡克给这样的小室取名为“细胞”。其实软木是由死细胞构成的,只是细胞壁,没有原生质。 胡克又通过对大量矿物、植物、动物的显微观察,1665年,出版了《显微图集》,向人们提供了许多鲜为人知的显微图画信息,它涉及化学、物理、地质和生物克还提出,热是物质粒子机械运动的结果,一切物质受热均膨胀,空气是由距离较大、相互分开的粒子构成,这些结果都被后人一一证实。胡克发明了轮形气压计,这是一种由绕轴旋转的指针记录压力的仪器。另外他制造的气候钟能将气压、温度、降雨量、湿度和风速记录在同一个旋转的记纹鼓上,由此有人称他是科学气象学的奠基人。 1666年,伦敦发生大火,烧掉了许多建筑,胡克提出按矩形格式重建伦敦。这一方案虽然未被采纳,但得到了伦敦市元老会的赏识,被任命为三个负责重建伦敦的测量员之一。当上测量员以后的10年,是胡克科学创造的高峰。在这段时间里,他不仅出色地完成了测量员的工作,而且科学研究硕果累累。1679年,胡克继《显微图集》后另一重要的著作问世,它是胡克在17世纪70年代出版的一组6本系列著作的合订本,取名《卡特勒演讲集》。 在“演讲集”中,至少有两个重要发现。其一是以胡克命名的弹性定律——胡克定律,即“有多大的伸长量,就有多大的力”,也就是说在弹性限度内,弹簧的弹力与弹簧的伸长量成正比;其二是他通过对简谐振动的研究提出“使物体运动的力的量与它所获得的速度的平方成正比例。” 在“演讲集”中,胡克通过对事物的观察,提出了关于力学的三个基本假定。第一,一切天体都具有倾向其中等多个领域。该书是第一本关于显微图画的专著,也是17世纪自然科学领域中的重要文献之一。胡克在书中指出,显微镜在生物学研究中将大有用武之地。 胡克是一位技术精湛的实验员,除了改进空气泵和钟表结构外,他还制造了显微镜和改进了望远镜,人们称胡克是17世纪最伟大的科学仪器发明家和设计者。另外他对天文学的贡献也特别富有价值,胡克首先在望远镜上安装了十字标线瞄准器、可变光栅以及可直接读出望远镜方位的调节旋钮。他是第一个制造格雷果反射望远镜的人,用这台望远镜,1664年,他发现了猎户星座的第五星,第一个提出木星绕轴旋转。他还对火星进行过详细观察并进行描述,这一成果在19世纪被用作确定火星旋转速度的依据,肯定了他在天文学方面的工作。 胡克在《显微图集》中还记录了他对光学的研究。他对云母、肥皂泡以及玻璃片间的空气层等薄且透明的膜中的色彩进行观察,发现颜色的变化呈周期性,随着薄膜厚度的增加,光谱出现重复。为了解释这个现象,他提出了光的波动学说。1672年,他又发现了衍射现象,并用光的波动学说进行解释。胡克是光的波动学说最早的倡导人之一。 胡克对热学和气象学作出过贡献。他曾与惠更斯一起断定在常压下冰的熔点和水的沸点是固定不变的,并建议以水的结冰温度为温度计的零度,即摄氏零度。胡心的吸引力或重力,这些天体不仅把它们自己的部分吸向中心,以使这些部分不至于从它们中飞离出去,而且还吸引着在它们活动范围内的其他天体,正如我们看到的地球那样。第二,一切天体在未受其他使其倾斜的作用力前保持直线运动不变,在受到这种力的作用后,运动将弯曲成圆形、椭圆形或其他更复杂的曲线。第三,离吸引力中心越近,吸引力越大。胡克的第二个假设具有革命性意义。因为在当时,连牛顿在内的很多学者认为圆周运动与直线运动一样是惯性运动。胡克的观点使他们不得不从另外一个角度看问题。胡克的第一和第三个假设是关于引力的假定。1679年,胡克在给牛顿的信中进一步指出,重力的改变与距离的平方成反比,从而为牛顿的万有引力定律的提出做出不容忽视的贡献。但因为胡克的数学分析能力有限,他的观点大多是凭其敏锐的洞察力靠直觉得出的,缺乏强有力的证明,所以有关力学的很多问题都由大科学家牛顿最终解决。 胡克除了在生物学、天文学、气象学、热学和力学方面有很大贡献外,还在地质学和结晶学方面有深入的研究。在胡克所处的时代,地质学是一个尚未充分开发的领域。胡克早在《显微图集》中曾收集了对大量矿物进行观察的描述,后来,他对地质方面的研究成果被收集在其遗著中《地震的演讲和讲座》。关于化石的起源问题,胡克指出,应该把“印有图形的石块”即化石分为两类:一类是有生物图形的化石;另一类是有非生物图形的化石。这两类化石的起源不同,不能一概而论,印有生物图形的化石是古生物的遗骸。在远离海洋的陆地上发现海洋生物化石,他认为是地球表面曾经发生过剧烈的隆起和变迁,使原来的海洋变成陆地。至于在化石中可以找到一些现今不存在的生物,他认为这是物种易变性的结果。胡克的这些观点虽然显得肤浅,但无疑体现了灾变论和进化论思想。他的这种灾变论和进化论的思想比居维叶和拉马克早了一百多年。胡克在对具有非生物图形的化石进行显微研究的过程中发现,晶体的多角体形状的形成有一定的规律。三年后,斯蒂诺(N.Steno)提出了晶体的界面角守恒定律。胡克的研究成果无疑是界面角守恒定律的先兆,所以他曾被称为结晶学的始祖。 胡克虽没有取得过很高的学历,没有显赫的地位,但在长期的实验研究中获得丰厚的回报,使我们更加清楚地认识到只要兢兢业业地工作,不论职业好坏,地位高低,均能取得优异成绩,三百六十行,行行出状元。 胡克的经历还提醒我们,知识是重要的,正是因为他的知识根基不深,使得他不能更加深入地研究,胡克在力学方面的工作充分地证明了这一点。但胡克对科学的贡献是巨大的,他不愧为一位伟大的物理学家和生物学家。

关于细胞的资料细胞壁位于植物细胞的最外层,是一层透明的薄壁。它主要是由纤维素组成的,孔隙较大,物质分子可以自由透过。细胞壁对细胞起着支持和保护的作用。细胞膜细胞壁的内侧紧贴着一层极薄的膜,叫做细胞膜。这层由蛋白质分子和脂类分子组成的薄膜,水和氧气等小分子物质能够自由通过,而某些离子和大分子物质则不能自由通过,因此,它除了起着保护细胞内部的作用以外,还具有控制物质进出细胞的作用:既不让有用物质任意地渗出细胞,也不让有害物质轻易地进入细胞。细胞膜在光学显微镜下不易分辨。用电子显微镜观察,可以知道细胞膜主要由蛋白质分子和脂类分子构成。在细胞膜的中间,是磷脂双分子层,这是细胞膜的基本骨架。在磷脂双分子层的外侧和内侧,有许多球形的蛋白质分子,它们以不同深度镶嵌在磷脂分子层中,或者覆盖在磷脂分子层的表面。这些磷脂分子和蛋白质分子大都是可以流动的,可以说,细胞膜具有一定的流动性。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。细胞质细胞膜包着的黏稠透明的物质,叫做细胞质。在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。绿色植物的光合作用就是在叶绿体中进行的。在细胞质中,往往还能看到一个或几个液泡,其中充满着液体,叫做细胞液。在成熟的植物细胞中,液泡合并为一个中央液泡,其体积占去整个细胞的大半。细胞质不是凝固静止的,而是缓缓地运动着的。在只具有一个中央液泡的细胞内,细胞质往往围绕液泡循环流动,这样便促进了细胞内物质的转运,也加强了细胞器之间的相互联系。细胞质运动是一种消耗能量的生命现象。细胞的生命活动越旺盛,细胞质流动越快,反之,则越慢。细胞死亡后,其细胞质的流动也就停止了。除叶绿体外,植物细胞中还有一些细胞器,它们具有不同的结构,执行着不同的功能,共同完成细胞的生命活动。这些细胞器的结。

AbstractSignificant research efforts have been undertaken in the last decade to develop specific cell-based therapies and, in particular, adult multipotent mesenchymal stem cells (MSCs) hold great promise toward such regenerative Bio-materials have been widely used in reconstructive bone surgery to heal critical-size bone defects due to trauma, tumor resection, and tissue In particular, gelatin cryogel scaffolds are promising new biomaterials owing to their There is an increasing demand for MSC-based regenerative approaches in the musculoskeletal Combining stem cells with biomaterial scaffolds provides a promising strategy for tissue Our previous studies showed the possibility to obtain MSCs from the human ovarian follicular liquid (FL) that is usually wasted during in vitro fertilization (IVF) In this study, we tested the ability of these FL cells to grow on gelatin cryogel in comparison with MSCs derived from human bone Samples and controls were analyzed with confocal and scanning electron Results demonstrated that FL cells could grow on the biomaterial not only on the top but also in the layers below till 60 µm of Data suggested that the observed cells were mesenchymal since positive for vimentin and CD-44, typical MSC Successful growth of putative MSCs derived from follicular liquid on 3D gelatin cryogel opens potential developments in biotech and medical applications

关于细胞生物学的论文

从细胞的类型,作用,功能,深入阐述,最好有自己独特的见解,再联系现实生活谈,也可以写些细胞间的相互协作,怎样共同完成各项生命活动的。选取一些作用独特的细胞写,更吸引人!

目的:(1)对目前国内经我们检测的三大类医疗器械的细胞生物相容性的现状进行分析。(2)提出医疗器械细胞生物相容性试验的重要影响因素,为医疗器械的生产、改进提供指导性建议。(3)比较活细胞计数法和MTT法两种细胞生物相容性评价试验方法的差异,得到一种准确、。

关于免疫细胞的论文

我是绑定IP的帐号,可以帮你下载。

一、基因疫苗的诞生自1796年英国医生琴娜(Jener)首次采用牛痘苗以来,疫苗已在世界范围内被广泛应用,200多年来各种疫苗已经帮助人类战胜了包括天花在内的多种传染病然而,现有的疫苗主要有两种:第一种疫苗是传统疫苗,即弱毒活苗和灭活苗,如鸡新城疫弱毒苗,猪瘟灭活苗,它是直接将无毒或减毒的病原体作为疫苗接种到人或动物体内,刺激机体免疫系统产生特异性免疫应答,从而预防疾病的发生;第二种疫苗是基因工程苗,它是通过基因工程,先分离得到具有强烈免疫原性但无毒性的抗原蛋白的编码基因,然后导入表达载体中,再在宿主细胞表达出重组抗原蛋白,经分离纯化后的重组抗原蛋白作为疫苗接种如重组乙肝疫苗。但它存在一些不可忽视的缺陷如:灭活疫苗难以诱发细胞免疫,需多次免疫注射;亚单位疫苗免疫原性差;减毒活疫茵存在毒性回升的危险等问题因此,现在对一些传染病仍缺乏相应的安全有效的疫苗 第三代疫苗基因疫苗的问世,为解决这些难题带来了希望基因疫苗(genetic vaccine)又称核酸疫苗(nucleic acid vaccine)或DNA疫苗,是在基因治疗(genetic therapy)技术的基础上发展而来的。基因治疗是从20世纪80年代发展起来用于预防和治疗疾病的最具革命性的生物医学医疗技术,其原理是将人或动物的正常基因或有治疗作用的基因通过一定方式导入人体靶细胞以纠正基因的缺陷或发挥治疗作用,从而达到治疗疾病目的。1990年Wolff JA等在进行基因治疗试验时,以裸DNA注射作对照,结果意外发现裸DNA可被骨骼肌细胞吸收并表达出外源性蛋白。1992年Tang 、 DC等首次证明经基因免疫产生的外源性蛋白质——人生长激素可刺激小鼠免疫系统产生特异性抗体,而且加强免疫后抗体效价增加,从而宣告基因疫苗的诞生。(注:1)概括起来,基因疫苗就是指将编码外源性抗原的基因插入到含真核表达系统的载体上,然后直接导入人或动物体内,让其在宿主细胞中表达抗原蛋白,该抗原蛋白可直接诱导机体产生免疫应答。抗原基因在一定时限内的持续表达,不断刺激机体免疫系统产生应答反应,从而达到预防疾病的目的。二、核酸免疫的作用机理目前对核酸免疫作用机理的认识主要还仅限于理论推测,且多数资料来自基因治疗试验,二者在作用机理上很相似。在基因免疫中,含病原体抗原基因的核酸疫苗被导入宿主细胞,被周围的组织细胞、APC细胞或其它炎性细胞摄取,并在细胞内表达。表达产物作为抗原可能的呈递途径是:肌细胞直接摄入或经T小管和细胞样内陷摄取进入,在外源基因启动子作用下使外源基因表达,使产物在胞内水解酶的作用下分解成长短不一的多肽,其中的一部分被hsp70运到内质网,经网膜上的TAP分子转入膜内与主要组织相容性复合物(MHC)I类结合,最终在细胞膜表面被CDS十细胞识别;另一部分短肽进入溶酶体,与(MHC)Ⅱ分子结合,运到细胞表面被 CD4+细胞识别。这些多肽含有不同的抗原表位,它们将诱导细胞毒性T淋巴前体、B细胞和特异性辅助T细胞,产生细胞免疫和体液免疫。同时,基因表达可以通过细胞分泌和分裂的方式进入组织细胞间隙,以天然折叠方式被B淋巴细胞识别。核酸免疫后,还可以使肌细胞和抗原递呈细胞被感染,从而使CD4+和CD8+细胞亚群活化,产生特异的免疫应答。 CorrM等(1996)的研究表明,从转染DNA得肌肉组织释放出的抗原被APC摄入,运送到管状淋巴结中,在B淋巴细胞和T淋巴细胞表达, I类MHC限制的CTL应答可能主要以这种方式产生。以前曾认为该过程需要内源抗原的表达,但现在的研究表明,只要有外源抗原的存在,也能有效地引起I类MHC限制的CTL应答。 三、基因疫苗质粒载体的构建获得准确的抗原编码基因并将它插入到合适的载体DNA上,是发展基因疫苗的主要工作。1、编码抗原蛋白基因的分离制备DNA疫苗首先要获得编码抗原的基因,一般选择编码病原体表面糖蛋白的基因。抗原蛋白产生后可在宿主体内正确糖基化,从而诱导对病原体的免疫应答反应;对于易变异的病原体,最好选择各种变型都具有的核心蛋白保守的DNA序列,这样可对各种变异的病原体产生免疫应答反应,避免因病原体变异产生的免疫逃避问题。2 目的基因质粒的载体构建基因疫苗大多采用质粒作载体。一般说来,基因疫苗质粒载体至少包括5个主要的部件:(1)细菌复制子,以便质粒DNA在细菌体内复制扩增,得到大量的拷贝,但不能在宿主细胞(真核细胞)中复制;(2)原核生物选择性标记基因,如抗生素抗性基因,以筛选含有质粒DNA的阳性细菌克隆(菌株);(3)真核生物的启动子、增强子、终止子、内含子等转录调控元件;(4)编码抗原蛋白的目的基因序列;(5)多聚核苷酸信号序列,以保证mRNA翻译时适时终止。另外,基因疫苗质粒载体通常含有一段未甲基化的CpG序列,其具有刺激Th1细胞的免疫活性。四、严重创伤后全身性炎症反应综合征及免疫调节治疗严重创伤后机体免疫功能表现为双向性改变。一方面表现为以吞噬功能和白细胞介素-2(IL- 2)等产生降低为代表的免疫受抑状态;另一方面表现出以全身性炎症反应综合征为特征的过 度炎症反应。正是这二方面共同作用构成了创伤后机体免疫功能紊乱,诱发多器官功能不全综合症(Multiple Organ Dysfunction Syndrome,MODS)。下面就全身性炎症反应综合征和免疫调节治疗作一综述。

免疫细胞功能试验包括体内和体外试验。免疫细胞功能体外试验主要根据免疫细胞的增殖活性、分泌活杀伤活性等特性而进行实验设计。具体免疫细胞功能检测内容包括:①淋巴细胞功能检测,包括T细胞增殖试验、T细胞分泌功能测定、T细胞介导的细胞毒试验以及体内试验;B细胞增殖试验、溶血空斑试验、酶联免疫斑点法以及体内试验;NK细胞活性检测方法:酶释放法、放射性核素释放法、化学发光法、流式细胞术法等。②吞噬细胞功能检测,方法有趋化功能检测、吞噬和杀菌功能测定等。

相关百科

热门百科

首页
发表服务