首页

> 论文期刊知识库

首页 论文期刊知识库 问题

型钢混凝土结构论文

发布时间:

型钢混凝土结构论文

你想写论文,让别人给你找资料?

百度上面有很多

(1)期刊论文[1]史庆轩*,王南,田园,王朋,李坤 高强箍筋约束高强混凝土轴心受压应力-应变全曲线研究[J] 建筑结构学报,第34卷,第4期,144-151页,[2]王秋维,史庆轩*,姜维山,张兴虎,侯炜,田园 新型截面型钢混凝土柱抗震性能试验研究[J] 建筑结构学报,第34卷,第11期,123-129页,[3]杨坤, 史庆轩*, 赵均海,姜维山,孟和 高强箍筋约束高强混凝土本构模型研究 土木工程学报, 第46 卷,第1 期,34-41 页,[4]Jinjie Men, Qingxuan Shi* ISCS method for the performance-based seismic design of verticallyirregular reinforced concrete frame Structural Design of Tall and Special Buildings,Volume22,Issue 11,pp887-902,[5]史庆轩*,王朋,李坤,王南,田建勃 加载制度对新型型钢混凝土柱的抗震性能影响[J] 工程力学,第31卷,第3期,152-159页,[6]史庆轩*,王朋,王秋维 钢筋混凝土柱剪切粘结破坏影响因素分析[J] 工程力学, 第30卷,第11期,136-142页,[7]侯 炜,史庆轩*,刘 阳 斜向加载钢筋混凝土核心筒抗震性能的试验研究[J] 工程力学,第30卷,第12期,213-219页,[8]杨坤*,史庆轩,赵均海,郭亚妮 高强箍筋约束高强混凝土柱的抗轴压性能[J] 工业建筑,第43卷,第2期,9-13页,[9]李坤*,史庆轩 钢筋混凝土剪力墙性能指标限值研究[J] 工业建筑,第43卷,第2期,24-28页,[10]杨坤,史庆轩*,赵均海 高强箍筋高强混凝土柱的塑性铰长度[J] 工程力学,第30卷,第2期,254-259页,[11]史庆轩*,王南,王秋维,门进杰 高强箍筋约束高强混凝土轴心受压本构关系研究[J] 工程力学,第30卷,第5期,131-137页,[12]史庆轩*,王斌,王朋,王南,田建勃 双轴加载下RC带翼缘剪力墙抗震性能对比分析[J] 福州大学学报(自然科学报),第41卷,第4期,712-716页,[13]候炜,史庆轩* 不同地震作用方向下混凝土核心筒基于增量动力分析的抗震性能评估[J] 振动与冲击,第32卷,第14期,116-121页,[14]候炜,史庆轩*,郭子雄 不同参数钢筋混凝土核心筒抗震性能研究[J] 工程力学, 第30卷, 第10期,77-85页,[15]郭智峰,门进杰*,史庆轩,王秋维,李坤 钢筋混凝土柱-钢梁组合节点力学性能初探[J] 土木工程学报,第46卷,增刊,101-105页,[16]李坤,史庆轩*,郭智峰,历英强,王南 钢筋混凝土剪力墙结构受力层间位移计算及探讨[J] 土木工程学报,第46卷,增刊,86-92页,[17]史庆轩*,王朋,王秋维 桁架-拱模型用于钢筋混凝土梁的受剪承载力计算分析[J] 土木建筑与环境工程,第35卷,第4期,7-12页,[18]史庆轩*,王朋,王秋维,卢亚北 型钢混凝土柱的抗震性能影响因素研究[J]工业建筑,第43卷,第10期,134-139页,[19]史庆轩*, 李博宇 钢筋混凝土板受冲切承载力对比分析[J] 工业建筑,第43卷,第9期,77-82页,[20]王峥*,史庆轩 钢筋混凝土梁斜截面受剪承载力对比分析[J]工业建筑,第43卷,第7期,105-109页,[21]李坤,史庆轩*,王朋,王南,王秋维 钢筋混凝土框架-核心筒结构地震反应能量分析 振动与冲击,第32 卷,2014 [22]史庆轩*,李坤,田建勃,王朋钢筋混凝凝土框架核心筒结构层间耗能分布研究工程力学,已录用,[23]门进杰*,李慧娟,史庆轩,贺志坚,王顺礼,周琦 某板式住宅高层建筑剪力墙结构优化设计研究[J] 结构工程师,第29卷,第3期,1-10页,[24]惠宽堂,王南*,史庆轩 碳纤维约束与箍筋约束混凝土轴压性能对比[J] 土木建筑与环境工程,第35卷,第4期,32-37页,[25]史庆轩*, 杨文星, 王秋维,田园,张兴虎,姜维山 高强箍筋高强混凝土短柱抗震性能试验研究建筑结构学报,第33卷,第9期,49-58页,[26]史庆轩*, 杨坤, 刘维亚等 高强箍筋约束高强混凝土轴心受压力学性能试验研究 工程力学,第29卷,第3 期,141-149页,[27] 杨文星, 史庆轩*, 张成中 高强箍筋高强混凝土梁抗剪试验研究 西安建筑科技大学学报(自然科学版),第44卷,第2期,198-203页,[28]王秋维*, 史庆轩, 唐六九 新型型钢混凝土柱的数值模拟及轴压比限值研究 工业建筑,第42卷,第7期,128-133页,[29]门进杰*, 史庆轩, 周琦 钢筋混凝土柱-钢梁组合框架节点研究进展 结构工程师,第28卷,第1期,153-158页,[30]张欣颖, 史庆轩* 闭口截面压型钢板组合楼板纵向剪切粘结承载力研究 四川建筑科学研究,第38卷,第2期,52-54页,[31]白力更*, 史庆轩, 姜维山,冯永伟,李宁 桁架-拱模型计算高强箍筋混凝土构件剪切承载能力 工业建筑,第42卷,第11期,68-74 页,[32] 赵群昌*, 史庆轩, 王秋维 填充墙框架结构基于性能的抗震评估方法研究 建筑科学,第28卷,第5期,71-75页,[33]Qingxuan Shi*, Yuan Tian and Nan W Comparison Study of High-Strength Concrete Confined byNormal- and High-Strength Lateral T Advanced Science Letters, 2011, 4(8-10): 2686-[34]王秋维*, 史庆轩, 姜维山 型钢混凝土偏心受压柱的二阶效应分析 力学与实践,第33卷,第3期,34-41页,[35]王秋维, 史庆轩*, 侯炜,田园 型钢混凝土框架结构基于增量动力分析的抗震性能评估 世界地震工程,第27卷,第1期,34-40页,[36]王秋维*, 史庆轩, 辛高伟 基于Pushover 方法的中小学砌体结构抗震性能评估 灾害学,第26卷,第2期,86-90页,[37]王秋维*, 史庆轩, 梁春霞 SRC 框架结构基于需求能力系数法的抗震性能评估 土木工程与管理学报,第28卷,第3 期,289-293页,[38] 门进杰, 史庆轩* 竖向不规则钢筋混凝土框架结构基于性能的抗震评估方法 振动与冲击,第30卷,第6期,114-119页,[39]史庆轩*,侯炜,田园, 王秋维 钢筋混凝土核心筒性态水平及性能指标限值研究 地震工程与工程振动,第31卷,第6期,88-95页,[40]史庆轩*,王社良,苏三庆,王秋维,朱军强 钢筋混凝土框架-剪力墙模型结构的拟动力试验研究 土木工程学报,第44卷,第7期,1-9页,[41]史庆轩*,侯炜,刘飞,郭栋 钢筋混凝土核心筒抗震性能试验研究 建筑结构学报,第32卷,第10期,119-129页,[42]史庆轩*,杨坤, 白力更等 高强箍筋约束高强混凝土柱抗震性能试验研究 土木工程学报,第44卷,第12期,9-17页,[43]刘派,史庆轩*,孙冲我国中小学钢筋混凝土框架结构性能指标量化水利与建筑工程学报,第9卷,第2期,7-10页,2)会议论文[44]Qingxuan Shi*, Nan Wang, Peng Wang, Zhifeng G Study of high-strength lateral ties stress ofhigh-strength confined concrete[C] Advanced Materials Research, 671-671: pp1958-1962, 2013,Kunming,China[45]Qingxuan Shi*, Jianbo Tian, Kun Li, Zhifeng G Research status on seismic performance ofsteel-concrete composite coupling beam[C] Advanced Materials Research, 671-671: pp1315-1318,2013, Kunming,China[46]Kun Li, Qingxuan Shi*, Zhifeng G Analysis on seismic energy response of reinforced concreteframe-core wall[C] Advanced Materials Research, 671-671: pp1329-1334, 2013, Kunming,China[47]王秋维*, 史庆轩, 王朋 不同含钢形式型钢混凝土柱截面设计方法研究 全国第十二届混凝土结构基本理论及工程应用学术会议论文集,9-11,70-75 页,浙江宁波[48] 门进杰*, 史庆轩, 邓明科等 某点式住宅高层剪力墙结构优化设计研究 全国第十二届混凝土结构基本理论及工程应用学术会议论文集,9-11,70-75 页,浙江宁波[49] Wenxing Yang*, Qingxuan Shi and Huixiang S Experimental Studies on Seismic Performance ofHigh Strength RC C Advanced Materials Research,V166-169,pp919-926,2012,Xi’an,China[50] Qiuwei Wang*, Qingxuan Shi and Liujiu T Research on quantified performance index for SRCframe Advanced Materials Research, V368-373, pp3353-3356, 2012, Xi’an, China[51] Qiuwei Wang*, Qingxuan Shi and Peng W Theoretical analysis research on story drift limit forSRC composite Applied Mechanics and Materials,V275-277,pp1123-1126,2012,Xi’an,China[52] Jinjie Men*, Qingxuan Shi and Qi Z Inter-story capacity spectrum for the performance basedseismic design of vertically irregular RC frame structures I: M Key Engineering Materials,V517, pp745-748, 2012, Hong Kong, China[53] Jinjie Men*, Qingxuan Shi and Qi Z Inter-story capacity spectrum for the performance basedseismic design of vertically irregular RC frame structures II: E Key Engineering Materials,V517, pp749-754, 2012, Hong Kong, China[54] Jinjie Men*, Zhifeng Guo and Qingxuan S Research on behavior of composite joints consisting ofconcrete and Applied Mechanics and Materials, V166-169, pp815-818, 2012, Xi’an, China[55] Jinjie Men*, Qingxuan Shi and Qi Z Overview of the research on connections in composite framesconsisting of RC column and steel Advanced Materials Research, V368-373, pp 568-572, 2012,Xi’an, China[56] QingXuan Shi*, Qiuwei Wang and Kun Y Displacement Based Seismic Evaluation of ReinforcedConcrete SAdvanced Materials Research, V163-167,pp1063-1067,2011,Guangzhou, China[57] Qingxuan Shi*, Yuan Tian and Wei H Experimental Study of Shear Strength for High-StrengthConcrete Beams with High-Strength S Advanced Materials Research, V163-167, pp972-976,2011, Guangzhou, China[58] Kun Yang*, Qingxuan Shi and He M Axial Compression Ratio Limits of HSC Columns Confinedwith High-Strength Stirrups, Advanced Materials Research V163-167, pp1024-1028, 2011,Guangzhou, China[59] Kun Li*, Qingxuan S Nonlinear Analysis of RC Core Walls Based on Three-Vertical-Line-ElementM Advanced Materials Research, V255-260, pp1959-1963, 2011, Guangzhou, China[60] Wei Hou*, Qingxuan Shi and Zhilin M Seismic Behavior Analysis on RC Core Wall Based on FiberM Advanced Materials Research, V163-167, pp1068-1073, 2011, Guangzhou, China[61] Qiuwei Wang*, Qingxuan Shi and Jinjie MSeismic Performance Evaluation of SRC Frames Basedon Incremental Dynamic Analysis,Advanced Materials Research, V163-167, pp4331-4335, 2011,Guangzhou, China[62] Qiuwei Wang*, Qingxuan Shi and Liujiu T Seismic performance evaluation for SRC framestructures, Advanced Materials Research, V 255-260, pp2421-2425, 2011, Guangzhou, China

钢筋混凝土结构构件裂缝原因浅析摘要:在房屋安全鉴定中,需要对整幢房屋的结构构件进行安全鉴定,首先通过现场踏勘进行外观检查,可能会发现钢筋混凝土结构构件各种质量问题,其中裂缝是最常见的现象之一。裂缝出现都是事出有因,有设计上错误、原材料性能缺陷、施工质量低劣、环境条件的变化、使用不当和地基不均匀沉陷等等,而建筑物的破坏往往始于裂缝。因此,如何鉴定裂缝、分析裂缝和控制裂缝,是安全鉴定工作的重要内容之一。关键词:混凝土;结构构件;裂缝;分析1引言在房屋安全鉴定中,需要对整幢房屋的结构构件进行安全鉴定,首先通过现场踏勘进行外观检查,可能会发现钢筋混凝土结构构件各种质量问题,其中裂缝是最常见的现象之一。裂缝出现都是事出有因,有设计上错误、原材料性能缺陷、施工质量低劣、环境条件的变化、使用不当和地基不均匀沉陷等等,而建筑物的破坏往往始于裂缝。因此,如何鉴定裂缝、分析裂缝和控制裂缝,是安全鉴定工作的重要内容之一。根据裂缝成因和特征,判断结构受力工作状况,评定结构的安全性、适用性和耐久性。此种鉴定方法具有简便、直观和快速等优点,在房屋安全鉴定中运用很广。其缺点在于它只是一种定性的分析方法,而不能定量地分析结构的安全性。为此,对可疑结构构件应进行强度、刚度和抗裂性验算,必要时还应通过荷载试验,然后作出安全鉴定意见。2钢筋混凝土结构构件裂缝分析判明是结构性裂缝还是非结构性裂缝:钢筋混凝土结构产生裂缝的原因很多,对结构的影响差异也很大,只有弄清结构受力状态和裂缝对结构影响的基础上,才能对结构构件进行定性。结构性裂缝多由于结构应力达到限值,造成承载力不足引起的,是结构破坏开始的特征,或是结构强度不足的征兆,是比较危险的,必须进一步对裂缝进行分析。非结构性裂缝往往是自身应力形成的,如温度裂缝、收缩裂缝,对结构承载力的影响不大,可根据结构耐久性、抗渗、抗震和使用等方面要求采取修补措施。(1)判明结构性裂缝的受力性质:结构性裂缝,根据受力性质和破坏形式进一步区分为两种:一种是脆性破坏,另一种是塑性破坏。脆性破坏的特点是事先没有明显的预兆而突然发生,一旦出现裂缝,对结构强度影响很大,是结构破坏的征兆,属于这类性质裂缝的有受压构件裂缝(包括中心受压、小偏心受压和大偏心受压的压区)、受弯构件的受压区裂缝、斜截面裂缝、冲切面裂缝以及后张预应力构件端部局压裂缝等。脆性破坏裂缝是危险的,应予以足够重视,必须采取加固措施和其它安全措施。塑性破坏特点是事先有明显的变形和裂缝预兆,人们可以及时采取措施予以补救,危险性相对稍小。属于这类破坏的受力构件的裂缝有:受拉构件正载面裂缝,受弯构件和大偏心受压构件正载面受拉区裂缝等。此种裂缝是否影响结构的安全,应根据裂缝的位置、长度、深度以及发展情况而定。如果裂缝已趋于稳定,且最大裂缝未超过规定的容许值,则属于允许出现的裂缝,可不必加固。例如某办公用房,四层二跨框架结构,跨度5m及7m,1998年竣工,使用不久,部分梁出现裂缝,要求鉴定。通过现场查勘,发现梁的裂缝均出现在梁的两端,为约45°的斜裂缝,且混凝土的质量较差,后经过对部分梁的混凝土取芯试压,最低强度等级约为C12,平均强度等级为C15,图纸设计混凝土强度等级为C20,二者相差较大,由于荷载增大及混凝土强度低,通过复算,梁处于超筋状态,属脆性破坏裂缝,应予立即加固。(2)查明裂缝的宽度、长度和深度:钢筋混凝土结构构件的裂缝按其表征可分三种:一是表面细小裂缝,即缝宽很小,长度短而浅;二是中等裂缝,其宽度在2mm左右,长度局限在受拉区,裂缝已深入结构一定深度;三是贯穿性裂缝,缝宽超过3mm,长度伸到受压区,裂缝已贯穿整个截面或部分截面。结构性裂缝不仅表征结构受力状况,还会影响结构的耐久性。裂缝宽度愈大,钢筋愈容易锈蚀,意味着钢筋和混凝土之间握裹力已完全破坏,使用寿命已近终结。一般室内结构,横向

型钢混凝土结构论文设计

你想写论文,让别人给你找资料?

结构力学是基础,抗震概念要清楚,基本构件计算熟练。

型钢混凝土的型钢可不受含钢率的限制的原因:纯钢筋混凝土的配筋率太大的时候,结构物延性不好,所以有含钢率的限制。型钢混凝土可以改善这个指标,型钢混凝土组合结构的延性比钢筋混凝土结构明显提高,尤其是实腹式型钢,因而此种结构有良好的抗震性能,型钢混凝土构件的承载能力可以高于同样外形的钢筋混凝土构件的承载能力一倍以上。所以型钢混凝土的含钢率会比纯钢筋混凝土的配筋率高很多,而由于克服了结构的延性问题,型钢混凝土中型钢不受含钢率的限制。【结构的延性】结构抗震的本质就是延性,提高延性可以增加结构抗震潜力,增强结构抗倒塌能力。为了利用结构的弹塑性变形能力耗散地震能量,减轻地震作用下结构的反应,应将钢筋混凝土框架结构设计成延性框架结构。钢筋混凝土结构的各类构件应具有必要的强度和刚度,并具有良好的延性性能,避免构件的脆性破坏,从而导致主体结构受力不合理,地震时出现过早破坏。因此,必须采取措施,做好延性设计,防止构件在地震作用下提前破坏,并避免结构体系出现不应有的破坏。

毕业论文~大体积混凝土施工 班级: 学号: 姓名:目录一、施工方案的合理选择……………………………………………………1二、连续浇捣混凝土时在拌合及运输方面应采取的措施……………………………2三、在施工过程中钢筋工程及模板工程的质量控制………………………………2四、外加剂的合理选择………………………………………………………………6五高温条件下的混凝土浇筑质量……………………………………………………6大体积混凝土施工中的质量控制摘要:大体积混凝土的施工技术要求较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝。因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证大体积混凝土顺利施工。 关键词:大体积混凝土 施工方案 高温条件 钢筋模板一、施工浇筑方案的选择:大体积混凝土的施工技术要求比较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝。因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证大体积混凝土顺利施工。1、 材料选择本工程采用商品混凝土浇筑。对主要材料要求如下:(1)水泥:考虑普通水泥水化热较高,特别是应用到大体积混凝土中,大量水泥水化热不易散发,在混凝土内部温度过高,与混凝土表面产生较大的温度差,使混凝土内部产生压应力,表面产生拉应力。当表面拉应力超过早期混凝土抗拉强度时就会产生温度裂缝,因此确定采用水化热比较低的矿渣硅酸盐水泥,标号为525#,通过掺加合适的外加剂可以改善混凝土的性能,提高混凝土的抗渗能力。(2)粗骨料:采用碎石,粒径5-25mm,含泥量不大于1%。选用粒径较大、级配良好的石子配制的混凝土,和易性较好,抗压强度较高,同时可以减少用水量及水泥用量,从而使水泥水化热减少,降低混凝土温升。(3)细骨料:采用中砂,平均粒径大于5mm,含泥量不大于5%。选用平均粒径较大的中、粗砂拌制的混凝土比采用细砂拌制的混凝土可减少用水量10%左右,同时相应减少水泥用量,使水泥水化热减少,降低混凝土温升,并可减少混凝土收缩。(4)粉煤灰:由于混凝土的浇筑方式为泵送,为了改善混凝土的和易性便于泵送,考虑掺加适量的粉煤灰。按照规范要求,采用矿渣硅酸盐水泥拌制大体积粉煤灰混凝土时,其粉煤灰取代水泥的最大限量为25%。粉煤灰对水化热、改善混凝土和易性有利,但掺加粉煤灰的混凝土早期极限抗拉值均有所降低,对混凝土抗渗抗裂不利,因此粉煤灰的掺量控制在10以内,采用外掺法,即不减少配合比中的水泥用量。按配合比要求计算出每立方米混凝土所掺加粉煤灰量。。2、混凝土配合比(1)混凝土采用搅拌站供应的商品混凝土,因此要求混凝土搅拌站根据现场提出的技术要求,提前做好混凝土试配。(2)混凝土配合比应提高试配确定。按照国家现行《混凝土结构工程施工及验收规范》、《普通混凝土配合比设计规程》及《粉煤灰混凝土应用技术规范》中的有关技术要求进行设计。(3)粉煤灰采用外掺法时仅在砂料中扣除同体积的砂量。另外应考虑到水泥的供应情况,以满足施工的要求。二、连续浇捣混凝土时在拌合及运输方面应采取的措施1、混凝土浇筑(1)混凝土采用商品混凝土,用混凝土运输车运到现场,每区采用2台混凝土输送泵送筑。(2)混凝土浇筑时应采用“分区定点、一个坡度、循序推进、一次到顶”的浇筑工艺。钢筋泵车布料杆的长度,划定浇筑区域,每台泵车负责本区域混凝土浇筑。浇筑时先在一个部位进行,直至达到设计标高,混凝土形成扇形向前流动,然后在其坡面上连续浇筑,循序推进。这种浇筑方法能较好的适应泵送工艺,使每车混凝土都浇筑在前一车混凝土形成的坡面上,确保每层混凝土之间的浇筑间歇时间不超过规定的时间。同时可解决频繁移动泵管的间题,也便于浇筑完的部位进行覆盖和保温。(3)混凝土浇筑时在每台泵车的出灰口处配置1~2台振捣器,因为混凝土的坍落度比较大,在5米厚的底板内可斜向流淌1米远左右,2台振捣器主要负责下部斜坡流淌处振捣密实,另外2~4台振捣器主要负责顶部混凝土振捣。(4)由于混凝土坍落度比较大,会在表面钢筋下部产生水分,或在表层钢筋上部的混凝土产生细小裂缝。为了防止出现这种裂缝,在混凝土初凝前和混凝土预沉后采取二次抹面压实措施。(5)现场按每浇筑100立方米(或一个台班)制作3组试块,1组压7d强度,1组压28d强度归技术档案资料用;l组作仍14d强度备用。三、在施工过程中钢筋工程及模板工程的质量控制根据平面控制网,在防水保护层上放出轴线和基础墙、柱位置线;每跨至少两点用红油漆标注。顶板混凝土浇筑完成,支设竖向模板前,在板上放出该层平面控制轴线。待竖向钢筋绑扎完成后,在每层竖向筋上部标出标高控制点。1、机具准备1)、剥肋滚压直螺纹机械连接机具由该项技术提供单位配备。高峰期钢筋施工时至少保证5台钢筋剥肋滚压直螺纹机,其技术参数如下表示:设备型号 GHG40型滚丝头型号 40型可加工范围 16~40整机质量(kg) 5902)限位挡铁:对钢筋的夹持位置进行限位,型号划分与钢筋规格相同。3)螺纹环规:用于检验钢筋丝头的专用量具。4)力矩扳手力矩扳手精度为±5%5)辅助机具砂轮切割机:用于钢筋端面整平用于检验钢筋丝头的专用量具6)、钢筋焊接机具电焊机、控制箱、焊接夹具、焊剂罐等焊接电流:焊接电源400~450A;施工手续现场钢筋工人员必须佩戴上岗证,焊工必须有岗位资格证(有效)参加钢筋机械接头加工人员必须进行技术培训,经考试合格后方可执证上岗。未经培训人员严禁操作设备。钢筋连接及锚固要求A竖向钢筋D≥18mm,采用电焊压力焊;横向D≥18mm采用机械连接;D<18mm用搭接。B相关要求(1)钢筋锚固必须符合GB5001-2002的规定,提供参考值如表:名称部位 锚固长度 末端弯钩长度 d<25 d≥25 基础DL 35d ≥10d底板 35d 40d ≥10d墙柱插筋 直接插至底板下表面 ≥10d(2)钢筋搭接长度必须符合GB50010-2002或按GB50204-2002附录B:纵向受力钢筋的最小搭接长度(3)机械连接接头按加工标准,见2D项所述钢筋的加工钢筋加工的形状、尺寸必须符合设计要求:A钢筋调直采用冷拉方法进行钢筋调直,I级钢筋冷拉率为4%,由于钢筋加工区场地有限,钢筋冷拉长度为27m,冷拉后为08m;钢筋冷拉采用两端地锚承力,标尺测伸长,并记录每根钢筋冷拉值。B钢筋弯曲1)钢筋弯钩或弯折:I级钢筋末端做180°弯钩,其圆弧弯曲直径5d(d为钢筋直径),平直部分长度为3d;Ⅱ级钢筋做90°或135°弯折时,其弯曲直径为4d。2)箍筋末端的弯钩:I级钢筋弯钩的弯曲直径≥受力钢筋直径或箍筋直径的5倍,弯钩平直长度为箍筋直径的10倍,弯钩角度45°/135°。C焊接接头1)施焊前检查设备、电源,随时处于正常状态,严禁超荷工作;2)钢筋安装之前,焊接部位和电极钳口接触的(150mm区段)钢筋表面的锈斑、油污、杂物等,应清除干净,钢筋端部若有弯折、扭曲,应予以矫直或切除,但不得锤击矫直。3)选择焊接参数主要参数为:焊接电流,焊接电压和焊接通电时间(参见施工工艺标准)。焊剂应存放于干燥的库房内,防止受潮。如受潮,便用前须经250~300℃烘焙2小时,并进行记录。D机械连接 钢筋端面整平→剥肋滚压螺纹→丝头质量检查→带帽保护→丝头质量抽检→存放待用。操作要点钢筋端面平头:采用砂轮切割机平头(严禁气割),保证钢筋端面与母材轴线垂直。剥肋滚压螺纹:使用钢筋滚压直螺纹机,将待加工钢筋加工成直螺纹;丝头质量检查:对加工的丝头进行质量检验(按以上丝头设计表);带帽保护:用专用的钢筋丝头塑料保护帽进行保护,防止螺纹损伤;丝头定量抽检:项目部质检部组织自检,存放待用:按规格型号及类型进行分类码放。钢筋绑扎及安装(1) 底板、基础梁钢筋防水保护层上放线,基础标高放线→搭设梁脚手架→南北向梁上铁放置、绑扎→东西向梁上钢筋放置、绑扎→放南北向梁箍筋→放置三道柱箍→东西向板梁钢筋下铁放置、绑孔→南北向板梁下铁放置、绑扎→放置底板、基础梁垫块→拆除基础梁脚手架→调整基础梁位置→墙柱插筋放线→放置墙柱插筋并临时固定→放置三道墙体水平筋→底板上铁标高放线→放置马凳→南北向底板上铁放置、绑扎→东西向底板上铁放置、绑孔→调整、固定墙柱插筋。底板、基础梁钢筋排列顺序为:东西向筋上铁在上,下铁在下;南北向钢筋在东西向钢筋中间;若基础梁上下铁不只一排,东西向筋与南北向钢筋交错布置;底板钢筋的弯钩,下排均朝上,上排均朝下;钢筋网的绑扎:所有钢筋交错点均绑扎,而且必须牢固;同一水平直线上相邻绑扎成“八”字型,朝向混凝土内部,同一直线上相临绑扣露头部分朝向正反交错;箍筋接头(弯钩叠合处)沿受力方向错开布置,箍筋转角与受力筋交叉点均应扎牢,绑扎箍筋时绑扣相互间应呈“八”字形 本工程主要是防护墙及顶板的支模及混凝土的浇筑,要确保混凝土的密实度防止射线泄漏, 防护墙、顶板模板在施工中的稳定性做到不变形、胀板。其它辅助用房按常规工程施工方法便可。 ⑴ 模板安装及支撑工程 本工程防护墙厚度有5m 、5m,高度8m、3m,为了保证工程需要,采用支模方法如下:模板采用20mm 厚竹胶合板、横档用80× 80 枋木间距400mm,拉丝及内撑均用Ф 16钢螺丝两用/ 梅花状80 × 80m 一道作为墙体拉结、墙体高度在0 米以上拉丝间距可墙大至20 × 20m 一道,立档采用宽160mm 槽钢、间距600,经计算防护墙体的侧压力在高5 米以下为5T/m2,因此,斜支撑需用200mm 槽钢间距为1200。立柱水平拉杆用40 × 40 角钢、十字交叉拉结。同时,在墙体转角位置由于拉丝不能固定,立档及斜撑槽钢按外侧壁的间距加密一倍安装。 为保证F 轴防护墙外侧模板的平整、垂直,除了在墙体用钢螺栓拉结外,在地梁上预埋Ф 16a1200 钢筋,作水平拉结,防止斜撑滑移。 ⑵ 顶板模板有支撑 本工程的顶板厚度不同, 梁部X 机房厚500,60CO 机房1000、直加机房2500,经计算,直加机房顶板的最大荷载重是65800N/m 2, 因此, 对模板、杉木支撑的要求很高, 为保证其模板的稳定生刚性, 采用支模如下。 模板为20mm 竹胶合板,下用80 × 80 枋木拼密。 模枋条用工字钢1 2 # , 固定在支顶上。 支顶用Ф 108 无缝钢管。间距800mm。顶板厚度为5 — 0 米的支撑,间距可增大到1 米。 为确保整体稳定性, 防护墙、枯板部分的模板均采用满堂红支顶一次成型,互成连整体 外加剂:设计无具体要求,通过分析比较及过去在其它工程上的使用经验,每立方米混凝土2kg,减水剂可降低水化热峰值,对混凝土收缩有补偿功能,可提高混凝土的抗裂性。具体外加剂的用量及使用性能,商品混凝土站在浇筑前应报告送达施工单位4外加剂的合理选择外加剂:设计无具体要求,通过分析比较及过去在其它工程上的使用经验,每立方米混凝土2kg,减水剂可降低水化热峰值,对混凝土收缩有补偿功能,可提高混凝土的抗裂性。具体外加剂的用量及使用性能,商品混凝土站在浇筑前应报告送达施工单位(1)选择水泥。选用杭州水泥厂水化热较低的#425矿渣硅酸盐水泥。其早期的水化热与同龄期的普通硅酸盐水泥相比,3d的水化热约可低30%。 (2)掺加磨细粉煤灰。在每立方米混凝土中掺加粉煤灰75kg,改善了混凝土的粘聚性和可泵性 ,还可节约水泥50kg。根据有关试验资料表明,每立方米混凝土的水泥用量每增减10kg,其水化热引起混凝土的温度相应升降1~2℃,因此可使混凝土内部温度降低5~6℃。 (3)选用优质外加剂。为达到既能减水缓凝,又使坍落度损失小的要求,经比较,最后选用了上海产效果明显优于木钙的EA—2型缓凝减水剂,可减少拌和用水10%左右,相应也减少了水泥用量,降低了混凝土水化热。 (4)充分利用混凝土后期强度。实践证明,掺优质粉煤灰混凝土后期强度较高,在一定掺量范围内60d强度比29d约可增长20%左右。同时按《粉煤灰混凝土应用技术规范(GBJ 146— 90 )》,地下室内工程宜用60d龄期强度的规定。为了进一步控制温升,减少温度应力,根据结构实际承受荷载情况,征得设计单位同意,将原设计混凝土28d龄期C30改为60d龄期C30(即用28d龄期C25代替设计强度),这样可使每立方米混凝土的水泥用量减少50kg,混凝土温度相应随之降低5~6℃。5高温条件下的混凝土浇筑质量1,考虑高温和远距离运送造机坍落度18±2cm, 水泥用量控制在370kg/3以下。由于降低水泥用量可降低混凝土温度16~18℃。 成的坍落度损失较大,取出 用原材料降温控制混凝土出机温度 根据由搅拌前混凝土原材料总热量与搅拌后混凝土总热量相等的原理,可求得混凝土的出机温度T,说明混凝土的出机温度与原材料的温度成正比,为此对原材料采取降温措施:①将堆场石子连续浇水,使其温度自浇水前的56℃降至浇水后的29℃ ,且可预先吸足水分,减少混凝土坍落度损失;②黄砂在钱塘江码头起水时,利用江水淋水冷却,使之降温。③虽混凝土中水的用量较少,但它的比热最大,故在搅拌混凝土用的3只贮水池内加入冰块,使水温由31℃降到24℃,总共用去冰块75t。这样一来,经计算出机温度T为8℃,37次实测的平均实测值2℃,送达现场的实测温度为60℃,从而使入模温度大为降低。 3 保持连续均衡供应控制混凝土浇筑温度 (1)为了紧密配合施工进度,确保混凝土的连续均匀供应,经过周密的计算和准备,安排南星桥和六堡两个搅拌站同时搅拌,配备了18辆3搅拌车和两只移动泵,在三天四夜里始终保持了稳定的供应强度,基本上做到了泵车不等搅拌车,搅拌车不等泵车,未发生过一次由于相互等待而造成堵泵现象。 (2)本工程基坑挖深7m,坑内实测最高气温达62℃,为避免太阳直接暴晒,温度过高,造成浇筑困难,采取在整个坑顶搭盖凉棚,并安设了通风散热设施,使坑内浇筑温度大幅度降低,接近自然气温,不仅控制了最高温升,而且改善了工人劳动条件,得以顺利浇筑。 3)为不使混凝土输送管道温度过高,在管道外壁四周用麻袋包裹,并在其上覆盖草包并反复淋水、降温。 (4)考虑混凝土的水平分层浇筑装拆管道过于频繁,施工组织工作难于实施,故采取斜面分层浇筑,错开层与层之间浇筑推进的时间以利下层混凝土散热,但上下层之间严格控制,不得超过混凝土初凝时间,不得出现施工“冷缝”。由于泵送混凝土的浆体较多,在浇筑平仓后用直尺刮平。约间隔1~2h,用木蟹打压两次,以免出现表面收水裂缝。4 加强混凝土保湿保温养护 混凝土抹压后,当人踩在上面无明显脚印时,随即用塑料薄膜覆盖严实,不使透风漏气、水分蒸发散失并带走热量。且在薄膜上盖两层草包保湿保温养护,以减少混凝土表面的热扩散 , 延长散热时间,减少混凝土内外温差。经实测混凝土3天内表面温度在48~55℃之间,且很少发现混凝土表面有裂缝情况。 5 通过监控及时掌握混凝土温度动态变化 (1)温度监控的最终目的是为了掌握混凝土内部的实际最高温升值和混凝土中心至表面的温度梯度,保证规范要求的内部与表面的温差小于25℃及降温速率。 (2)温度是直接关系整个混凝土基础质量的关键。为了客观反映混凝土温度状况,进行原材料温度 、出机温度、入模温度、自然温度、覆盖养护温度、混凝土内部温度、棚内温度等7个项目的测试,便于及时调整温控措施。(3)主楼基础的混凝土温度按不同平面部位和深度共布置了25个测点(图1),由专人负责连续测温一周,每间隔2h测一次,比规范规定每8h测2次的频度要大些。效果及结论 (1)混凝土强度按《混凝土强度检验与评定标准(GBJ 107-87)》进行了测试,有关结果 如表1,属合格。(2)由于采用了“双掺技术”(缓凝减水剂和磨细粉煤灰),延缓了凝结时间,减少了坍落度损失,改善了混凝土和易性和可泵性。使得混凝土在高温、远距离运送条件下仍能顺利泵送 ,也未发生堵泵。 (3)混凝土出机温度和入模温度共实测37次,原材料温度测试20次,混凝土内外温度连续测一周,混凝土中心最高温度出现在浇注后的3~4d之间,与文献介绍的一致。内外温差仅为1 5℃,且低于规范规定不得大于25℃的要求。 (4)经各有关单位的严格检查和近年来的使用,未发现有害裂缝(仅表面有个别收水裂缝)。 混凝土密实平整光洁,无蜂窝麻面

钢筋混凝土结构论文

上网查一下,山东省质量通病防治措施通知,可能是2010年13号文吧

可以

可以说说具体的写作要求么?

型钢混凝土结构论文参考文献

中文的你还没看懂

<<混凝土结构>>中册混凝土结构与砌体结构设计 一书中有很大篇幅的讲解。

钢筋混凝土结构工程论文

浅谈钢筋工程的质量控制 论文 【摘 要】钢筋工程是钢筋混凝土工程的重要组成部分,要加强钢筋工程施工过程的配料、加工、绑扎、安装等工序质量控制,以确保钢筋工程质量。 【关键词】钢筋工程 建筑施工 质量控制 钢筋工程是钢筋混凝土工程的重要组成部分,重视钢筋施工是保证钢筋混凝土质量的重要途-    【摘 要】钢筋工程是钢筋混凝土工程的重要组成部分,要加强钢筋工程施工过程的配料、加工、绑扎、安装等工序质量控制,以确保钢筋工程质量。   【关键词】钢筋工程 建筑施工 质量控制      钢筋工程是钢筋混凝土工程的重要组成部分,重视钢筋施工是保证钢筋混凝土质量的重要途径。钢筋工程的施工包括配料、加工、绑扎、安装等实施过程,在建筑施工中,要确保钢筋工程质量,必须加强以下方面的质量控制。      一、钢筋的检验      钢筋是钢筋混凝土结构中主要受力材料,钢筋质量是否符合标准,直接影响建筑物的使用和安全。钢筋进入施工现场或加工厂,必须具有出厂质量证明或试验报告单,钢筋应平直、无损伤,表面不得有裂纹、油污、颗粒状或片状老锈。每捆(盘)钢筋均应标牌,标牌上应有厂标,钢号,炉罐(批)号,尺寸等标记。进场钢筋应按进场批次和产品的抽样检验方案抽取试样作机械性能试验,当发现钢筋脆断、焊接性能不良或力学性能显著不正常等现象,要对该批钢筋进行化学成分或其他专项检验。合格后方可使用。      二、钢筋的保管      钢筋进入施工现场后,必须严格按批次规格、牌号、直径、长度挂牌存放,并注明数量,不得混淆。钢筋应尽量堆放在仓库式料棚内,现场条件不具备时,要选择地势高,土质坚实、平坦的露天场地存放,钢筋下面要加垫木,离地距离不宜小于200㎜,以防钢筋锈蚀和污染。堆放场地周围要挖排水沟,以利排水。钢筋成品要按照工程名称和构件名称,按编号挂牌排列,牌上注明构件名称、部位、钢筋形式、尺寸等,不能将几项工程的钢筋混放在一起,以便提取和查找。      三、钢筋加工的质量控制      钢筋加工主要包括调直、切断和弯曲成型,其质量控制措施主要是:为防止钢筋调直过程过度损伤钢筋表面,钢筋穿过调直机压辊之后,要控制调直机上下压辊间隙为2-3㎜。调直时可以根据调直模的磨损情况及钢筋的性能,通过试验确定调直模合适的偏移量,以保证钢筋调直的质量;钢筋切断时为确保切断尺寸准确,要拧紧定尺卡板的紧固螺丝,调整钢筋切断机的固定刀片和冲切刀片间的水平间隙;钢筋弯曲成型时,要确保成型的尺寸准确,质量控制措施是加强钢筋配料及下料的管理,根据实际情况和经验预先确定钢筋的下料长度调整值。为了确保下料画线准确,要制订切实可行的画线程序,对形状比较复杂或大批量弯曲的钢筋,要通过试弯确定合适的操作参数。      四、钢筋连接的质量控制      钢筋连接是指钢筋接头的连接,其方法有绑扎连接、焊接和机械连接。钢筋绑扎连接中,受拉钢筋和受压钢筋的搭接长度及接头位置要符合《混凝土结构工程施工质量验收标准》(GB50204-2002)的相关规定。钢筋焊接的接头形式、焊接工艺和质量验收要符合设计文件及《钢筋焊接及验收规范》。钢筋机械连接接头有套筒挤压接头、钢筋锥螺纹接头、钢筋直螺纹接头等,必须满足相应接头的连接技术规程。 五、钢筋绑扎和安装的质量控制      钢筋骨架外形尺寸控制   绑扎钢筋骨架时,要将多根钢筋端部对齐,要防止钢筋绑扎偏斜或骨架扭曲。对尺寸不准的骨架,可将导致尺寸不准的个别钢筋松绑,重新安装绑扎。   保护层厚度的控制   为保证保护层的厚度,钢筋骨架要用砂浆垫块或塑料定位卡,其厚度应根据设计要求的保护层厚度来确定。骨架内钢筋与钢筋之间的间距为25㎜时,宜用25㎜的钢筋控制,其长度同骨架宽度。所用垫块与25㎜的钢筋头之间的距离宜为1米,不超过2米。对于双向双层板钢筋,为确保钢筋位置准确,要垫铁马凳,间距1米。在混凝土浇筑过程中,,发现保护层尺寸不准确,要及时采取补救措施。   钢筋接头位置和接头数量的控制   配料时要仔细了解钢材原材料长度,根据设计要求,要组织钢筋班组学习相关规范,选择合理搭配方案。当梁、柱、墙钢筋的接头较多时,配料加工应根据设计要求预先画施工操作图,注明各编号钢筋的搭配顺序,并根据受拉区和受压区的要求正确决定接头位置和接头数量。现场绑扎时,事先进行详细交底,以免放错位置。若发现接头位置或接头数量不符合规范要求,应重新制订设置方案;已绑扎好的,要拆除钢筋骨架,重新确定配置绑扎方案再进行绑扎。如果个别钢筋的接头位置有误,可将其抽出,返工重做。   弯起钢筋放置方向的控制   为防止出现弯起钢筋放置方向及弯起点的位置不正确,事先要对操作人员进行详细的技术交底,加强施工过程检查与监督,确保工序质量必要时在钢筋骨架上挂提示牌,提醒安装人员注意。   现浇楼板负弯矩钢筋的质量控制   负弯矩钢筋按设计图纸定位,绑扎要牢固,适当放置钢筋支撑,将其与下部钢筋连接,形成整体,浇注混凝土时,采取保护措施,避免人员踩压。对已被压倒变形的负弯矩钢筋,浇注混凝土前要及时调整复位加固,不能修整的钢筋要重新制作安装。   梁中构造钢筋的控制   当梁高大于700㎜时,在梁的两侧沿高度每隔300-400㎜设置一根不小于10㎜的纵向构造钢筋,纵向构造钢筋用拉筋连接。箍筋被钢筋骨架的自重或施工荷载压弯时,要将压弯箍筋的钢筋骨架临时支上,补充纵向构造钢筋和拉筋。      六、钢筋工程施工质量检查验收方法的控制      钢筋工程质量检查的目的是掌握质量动态,发现质量隐患。要按照工程质量检查的依据、内容和质量标准,采取直观检查、实测检查、仪器测试等方法,结合工程质量的“三检制”,使质量检查工作贯穿于钢筋施工全过程。   钢筋工程属于隐蔽工程,在浇注混凝土前应对钢筋及预埋件进行隐蔽工程验收,并按规定做好隐蔽工程记录,以便查验。其主要内容包括:纵向受力钢筋的品种、规格、数量、位置是否正确,特别注意检查负弯矩钢筋的位置;钢筋的连接方式、接头位置、接头数量、接头面积百分率是否符合规定;箍筋、横向钢筋的品种、规格、数量、间距及预埋件的规格、数量、位置等是否符合设计文件和规范要求;要检查钢筋骨架或网片是否牢固,有无变形、松脱和开焊等。      参考文献:   [1]建设部人事教育司钢筋工中国建筑工业出版社   [2]汤振华钢筋工中国环境科学出版社,   [3]中国建设监理协会组织编写建设工程质量控制中国建筑工业出版社,   [4]姚谨英建筑施工技术中国建筑工业出版社,

钢筋混凝土结构是一门既具有很强实践性,又具有较强的综合性的应用学科,它是建立在科学试验和水利水电工程实践基础上,综合运用数学、力学、材料及施工技术成就具有广阔发展前景的学科。在学习钢筋混凝土结构时,应注意以下几点: (1)钢筋混凝土结构通常是由钢筋与混凝土结合而成的一种结构。钢筋混凝土材料与理论力学中的刚性材料以及材料力学、结构力学中的理想弹性或理想塑性材料有很大的区别。为了对混凝土结构的受力性能与破坏特征有较好的了解,首先要求对钢筋和混凝土的力学性能要较好地掌握。 (2)钢筋混凝土结构在裂缝出现以前的抗力行为,与理想弹性结构的相近。但是,在裂缝出现以后,特别是临近破坏之前,其受力和变形状态与理想材料的有显著不同。钢筋混凝土结构的受力性能还与结构的受力状态、配筋方式和配筋数量等多种因素有关,暂时还难以用一种简单的数学模型和力学模型来描述。因此,目前主要以钢筋混凝土结构和构件的试验和工程实践经验为基础进行分析。许多计算公式都带有经验性质。在学习本课程时,应该注意各计算公式与力学公式的联系与区别。 (3)我国的《建筑结构荷载规范》(GB50009-2001)在进行大量的试验、调查与统计的基础上,对建筑结构可能承受的各种荷载大小有着明确的规定。我国的《混凝土结构设计规范》(GB50010-2002)也给出了各种常用钢筋和混凝土的强度、弹性模量等指标。鉴于实际情况的复杂性,建筑结构上的实际荷载和实际材料指标与规范规定的大小会有一定的出入。它们可能高于规范规定的数值,也可能低于规范规定的数值。此外,不同结构重要性也不一样。它们对于结构的安全、适用和耐久的要求各不相同。为了使混凝土结构设计技术先进、经济合理、安全适用、确保质量的要求,将混凝土结构各种分析公式用于设计时,考虑了上述各种因素的影响。学习本课程时,应该注意分析公式与设计公式之间的联系与区别,了解和掌握我国有关钢筋混凝土结构设计的技术和经济政策。 (4)进行钢筋混凝土结构设计时离不开计算。但是,现行的实用计算方法一般只考虑了荷载效应。其他影响因素,如:混凝土收缩、温度影响以及地基不均匀沉陷等,难于用计算公式来表达。《规范》根据长期的工程实践经验,总结出一些构造措施来考虑这些因素和影响。因此,在学习时,除了要对各种计算公式了解掌握以外,对于各种构造措施也必须给予足够的重视。在设计混凝土结构时,除了进行各种计算以外,还必须检查各项构造要求是否得到满足。 (5)为了指导钢筋混凝土结构的设计工作,名国都制订有专门的技术标准和设计规范。它们是各国在一定时期内理论研究成果和实际工程经验的总结。在学习混凝土结构时,应该很好地熟悉、掌握和运用它们。但是也要了解,混凝土结构是一门比较年轻和迅速发展着的学科,许多计算方法和构造措施还不一定尽善尽美。也正因为如此,各国每隔一定时间都要将自己的结构设计标准或规范修订一次,使之更加完善合理。因此,我们在很好地学习和运用规范的过程中,也要善于发现问题,灵活运用,并且不断地进行探索与创新。

相关百科

热门百科

首页
发表服务