首页

> 论文期刊知识库

首页 论文期刊知识库 问题

无脊椎动物论文摘要写什么

发布时间:

无脊椎动物论文摘要写什么

生物:从海鞘到我们之路--比较基因组学之研究 编辑 Gene 报导 脊椎动物的无脊椎近亲海鞘的基因组被定了序,让科学家有机会利用比较基因组学的方法,来研究脊椎动物的起源与演化。发表在Science的海鞘Ciona intestinalis基因组研究结果是由国际团队所完成的,它是第七个基因组被定序的动物,主要由美国能源部附属基因组研究所、加州大学柏克莱分校分子及细胞生物学系、京都大学动物系和日本的国家遗传学研究所所领导,并且有别外二十几家研究单位合作进行,参与者有87人,分布在五个国家。有了海鞘的基因组,透过和人类或其他动物的比较,科学家能够进一步了解人类大脑、心脏和神经及免疫系统等的起源和演化,并且更了解脊索动物和脊椎动物的一般发育。柏克莱加大的遗传学和发育学教授Mike Levine说道,海鞘在生物学家心中享有特别的地位,因为它提供了无脊椎动物和脊椎动物的演化联系。当你看到其成体时,会以为那是简单的动物,亚里斯多德就以为它是软体动物,但当你看到其胚胎发育,它显然是复杂的高等动物,俄国生物学家Alexander Kowalevsky就认出了其幼虫尾的脊索。它们是我们很古老的表亲。五亿多年前,动物开始快速演化,成为三、四十个体制相异的门类,至今现生的动物界可以划分为35个门。其中不具有脊椎(或脊索)的34个门统称为无脊椎动物,而剩下的就是脊索动物门了。脊索动物有四个主要共同特徵:脊索(notochord)、背部中空的神经索(dorsal, hollow nerve cord)、咽裂(pharyngeal slit)和肛门后肌肉质的尾部(muscular postanal tail)。脊索动物又分为三个亚门:一是头索动物亚门(Cephalochordata),又称无头类(Acrania),以文昌鱼为代表;二是尾索动物亚门(Urochordata),又称被囊类(Tunicata),例如海鞘,这两类都是原始的脊索动物,不具有脊椎;第三个就是我们最熟悉的有头类(Craniata)之一的脊椎动物亚门(Vertebrate),包括鱼类、两生类、爬虫类、鸟类和哺乳类。但脊椎动物却走上了另一条不同的路子,与头索动物及尾索动物相较,脊椎动物的神经系统前端特化成复杂的脑,以及与脑相关联的感觉器官,如眼、耳、鼻等,对环境有更灵敏的反应能力;运动器官也更精巧,以配合感觉器官的改变;大脑外有颅骨保护、脊索演变为分节的脊椎、内骨骼保护著体内器官,这些特徵都使得脊椎动物比其它脊索动物更具环境适应力,使得脊椎动成为脊索动物这一门中,种类和数量最发达的一支。化石记录显示,公认最早出现的脊椎动物是75亿年前的奥陶纪的介皮类(Ostracoderms),它们在海洋中行底栖生活,身披厚重的外骨骼,没有上下颔,也没有胸鳍、腹鳍等可活动的偶鳍。与介皮类亲缘关系最接近的脊椎动物是无颌纲(Agnatha)的盲鳗(Hag fishes)及八目鳗(lampreys),它们的脊椎还是软骨质,是相当原始的脊椎动物。到了95亿年前的志留纪(Silurian)末期,地球上出现了一群具有上下颔的鱼类,这是一项极重大的变革,使原本行过滤生活的脊椎动物成了活泼的猎食者,同时也演化出了可活动的偶鳍,使得活动更灵活。这些鱼类包括已灭绝的盾皮类(Placodermi)、部份现生的软骨鱼类(Chondrichthyes),如鲨鱼、魟等,以及在现代海洋及淡水中称霸的硬骨鱼类(Osteichthyes)。硬骨鱼类的其中一支又慢慢往陆地发展,演化成了今天陆地上的各种脊椎动物。过去许多动物学家认为脊椎动物的祖先很有可能是演化自尾索动物。海鞘的成体虽然没有明显的脊索,但是其幼虫的尾部却明显地带著一根脊索。有人认为在寒武纪早期,尾索动物的幼虫发生了幼体生殖(paedogenesis)的现象,其生殖器官在变态之前就成熟了。经过了天择,尾索动物的幼虫发展出了分节的肌肉和强壮的骨骼来支撑身子,并且因为头的形成对适应环境有相当的优越性,就演化出了带头和内骨骼的脊椎动物。美国能源部附属基因组研究所所长Eddy Rubin认为虽然它们和我们外观大不像,但是还是有许多特徵同脊椎动物是相同的。透过基因组的比较,我们可以在分子的层次上了解与对方的关系,并且研究这些相似的系统和基因是如何从五亿多年前的共同祖先演化而来的。身为尾索动物的海鞘分布在世界上各浅海中。桶状的海鞘附著在岩石、防波堤、般舶和海底,并利用篮状滤食器滤食浮游生物。海鞘卵受精一天后就发育成只有二千五百个细胞的小幼虫,不久后就找个地方定居下来变态成为成体。海鞘的基因组由一百六十万个碱基组成,大约只有人类的廿分之一,只有最小基因组脊椎动物河豚的一半。其中一百一十七万个碱基组成约有一万六千个基因,有八成在人类和其他脊椎动物中也可找到。不过其基因数只有人类的一半。美国能源部附属基因组研究所的计算基因组学主任Daniel Rokhsar说道,海鞘基因组会如此苗条的原因是,它大部分在脊椎动物中有好几个贝份的基因,在海鞘中,只有一份。而多出来的贝份,可能会突变掉或消失,或者演化成负责其他功能。从海鞘基因组中,我们可以看出人类这系谱中的新进展,例如有些特定的免疫系统和神统系统基因在海鞘就找不到,这显然是脊椎动物的新设备。脊椎动物的复杂性也可能是从大量的基因复制而产生的。海鞘没有许多决定脊椎动物身体结构的重要Hox基因。有一些Hox基因单独存在,另一些却消失了。然而海鞘也有类似於脊椎动物的感光基因,和其他形成心脏和甲状腺的基因。但是海鞘利用血蓝蛋白,而非红血球来运送氧气,并且缺少制造胆固醇和组织胺的基因。在某些方面,海鞘和细菌、真菌和植物的相似度比和脊椎动物还来得高:制造纤维膜以支持进食吸管的基因,就和制造纤维素的基因很类似,这样的基因在其他动物是找不到,有可能是从植物等水平基因转移来的。Levine就认为海鞘基因组的分析结果和1871年达尔文在The Descent of Man一书中的主张完全吻合,达尔文主张脊椎动物和海鞘有共同祖先,而一支演化成海鞘,另一支在脊椎动物纲开花结果。

无脊椎动物论文摘要

生物多样性保护及其研究进展[综述] 摘要】 由于人口的增长和人类经济活动的加剧,致使生物多样性受到了严重的威胁,引起国际社会的普遍关注.生物多样性是生物及其与环境形成的生态复合体以及与此相关的各种生态过程的总和,具有十分重要的价值,是人类生存的物质基础.各国政府和有关的国际组织积极投入到保护生物多样性的全球行动中.为了促进保护工作,国内外都开展了相关的研究工作.综观该领域的研究现状,可以看出以下7个方面已成为当前生物多样性研究的热点:①生物多样性的调查、编目及信息系统的建立;②人类活动对生物多样性的影响;③生物多样性的生态系统功能;④生物多样性的长期动态监测;⑤物种濒危机制及保护对策的研究;⑥栽培植物与家养动物及其野生近缘的遗传多样性研究;⑦生物多样性保护技术与对策.结合我国的具体情况,建议优先考虑以下4个方面的研究:①生物多样性的调查、编目与动态监测;②物种濒危机制及保护对策的研究;③生物多样性的生态系统功能与生态系统管理;④栽培植物与家养动物及其野生近缘的遗传多样性研究. 有全文

陆生无脊椎动物指的是成熟(成年)个体只能在陆地生存而不能在水中生存的无脊椎动物而那些一生只能离开水源在陆地存活短时间的无脊椎动物不包括在内,它们是水生无脊椎动物

我再给你找一些动物的进化过程,你好好的参考一下看看想写那个,下面这个是成品论文。你直接还不如说找作文 500字,愁。寒武纪大爆发挑战的就是渐变论,但是并不能否证渐变论。它即使成立,也不过表明进化有时候是能够以跃变的方式进行的,并不能否认进化在其他时候是以渐变的方式进行的。寒武纪大爆发更不会挑战进化论。几乎所有动物的“门”都在寒武纪早期出现,绝不意味着这些动物祖先不是进化而来的,更不意味着它们之后没有发生进化。神创论者在介绍寒武纪大爆发时,试图给人这种印象:几乎所有的动物都是同时突然出现的,以后只有灭绝而没有进化。其实完全不是这么回事。 第一,在寒武纪之前,动物已经过了漫长的进化过程。自五十年代以来,古生物学家已在世界各地三十个地方发现了大量的寒武纪之前的多细胞生物乃至动物,数量最多、最为闻名的在四个地方:澳大利亚的埃迪亚加拉山(Ediacara Hill)(因此这段时期被称为埃迪亚加拉纪(Ediacarian))、加拿大纽芬兰的(Mistake Point)、俄罗斯的白海海岸和纳米比亚。此外还有中国瓮安动物群,据称是迄今发现的最古老的实体化石动物群。这些寒武纪之前的多细胞生物包括软珊瑚、海蜇、蠕虫和其他稀奇古怪的生物。对这些多细胞生物是否是寒武纪动物的直接祖先,以前有争议,因为在1995年之前从这些多细胞生物到寒武纪动物还存在一段地质空白,所以有专家主张这些早期多细胞生物全部灭绝,在寒武纪又再来一次从单细胞到多细胞的进化。在1995年,在纳米比亚火山灰层中出现了大量的寒武纪之前的多细胞生物,恰好补上了这段空白,所以,现在已很少有专家怀疑前寒武纪的多细胞生物和寒武纪的动物没有相承关系。 第二,寒武纪的动物并不是“同时”出现的,而是持续了几百万年,这在进化论史上当然 是短时间,但对神创论来说,却是长得不可思议。 第三,“几乎所有动物的门”在寒武纪地层出现并不等于“几乎所有动物的种”在那时候都已出现。事实上,寒武纪的动物一般地只是那个门的原始物种,以后几乎全都灭绝了,后来的物种是进化来的。比如,寒武纪只存在少数几种原始的脊索动物,而丰富多彩的脊椎动物各类群,包括鱼类、两栖类、爬行类、哺乳类和鸟类,都是在寒武纪之后从 原始脊索动物逐渐进化来的。现代脊椎动物各物种更都有了几亿年的进化史。 为什么几乎所有动物的门会在较短的时间(数百万年!)内进化出来,生物学家们提出了不少的解释,目前被较为广泛接受的是Hox基因调控理论。Hox基因是一种“同源异形”基因,是动物形态蓝图的设计师,在发育过程中控制身体各部分形成的位置。如果同源异形基因发生突变,会使动物某一部位的器官变成其 他部位的器官,叫做同源异形。比如,让某个同源异形基因发生突变,能使果蝇的身体到处长眼睛,在该长眼睛的地方长出翅膀,或者在该长触角的地方长出了脚。Hox基因在所有的脊椎动物和绝大部分无脊椎动物中都存在,调控的机理也 相似,这表明它可能是最古老的基因之一,在最早的动物祖先中就已存在。Hox 的突变一开始时在胚胎早期引起的变化不大,但随着组织、器官的分化定型,突变的影响逐步被放大,导致身体结构发生重大的改变。这可以解释寒武纪物种大爆发。那时候基因结构、发育过程都较简单,Hox的基因突变容易被保留,结果导致了身体结构的多姿多彩。给你参考资料一些动物名称的来历adder 蝰蛇在英文中有若干个词由于发音方面的原因导致词形发生了变化,adder即为一例。该词在中古英文原作naddre或nadder。自14世纪起,nadder的首字母n开始与前面的不定冠词a结合,a nadder逐渐变成了an adder。情况类似的还有apron(围裙),auger(螺旋钻),eyas(小鸟),umpire(仲裁人)等词。原来adder泛指蛇或毒蛇,后来词义缩小,现特指“蝰蛇”,毒蛇的一种。albatross 信天翁该词源于阿拉伯语。阿拉伯人把吊桶叫做al qadus,这个词进入西班牙语和葡萄牙语,以alcatraz的形式出现,用以指“鹈鹕”,这或许是由于这种鸟的下颌底部有一吊桶状的大皮囊的缘故。美国圣弗兰希斯湾有一个岛,因鹈鹕成群栖息,西班牙人将其命名为Alcatraz。16世纪alcatraz进入英文后,形式和意义都发生了变化。根据意为“白色的”拉丁文albus,alca-这一成分被改作alba-,整个词变为albatross,用以指习性和栖息地都和鹈鹕极不相同的一种大型海鸟,即信天翁。由于海员经常见之成群出现于Cape 哦发Good Hope(好望角),所以给albatross取了个别名,叫Cape Sheep或Cape Hope Sheep。有关albatross的传说恐怕比任何一种海鸟的都要多。旧时迷信,说杀死albatross会带来厄运。英国诗人柯尔律治(S.T.Coleridge,1772-1834)的著名叙事长诗《古舟子咏》(The Rime of the Ancient Mariner,1798)就描写了一位老水手在海上随意射杀一只albatross,致使全船遭难,为了赎罪,将鸟尸挂于颈上。据此产生的习语albatross around one’s neck,字面意为“挂于颈上的信天翁”,现常用以喻指“累赘”,“无法摆脱的苦恼”或“沉重的负担”。alligator 短吻鳄古罗马人所见到的最大蜥蜴约有人的前臂一般大小,因此就用原义为“前臂”的lacertus / lacerta一词来指称蜥蜴。该词通过法语lesard进入英文,演变为lizard,而进入西班牙语以后则作lagarto。当西班牙人在新大陆见到一种类蜥蜴爬行动物时,他们也称之为lagarto,只是按习惯在名词前多加了定冠词el,作el lagarto,相当于英文the lizard。英国人误认为是个单词elagarto,就将它吸收了过来,最后把它变成alligator。西班牙人在美洲所见到的实则美洲鳄,一种短吻鳄。因此,alligator现一般多指“短吻鳄”,和crocodile(鳄)略有不同,但许多人把这两者混同起来。例如,在澳洲和美洲,alligator常用以指crocodile。在现代口语中,alligator常缩略为gator。arachnid 蛛形纲动物据古希腊传说,吕底亚(Lydia)少女阿拉克尼(Arachne)善织绣,竟敢与智慧和技艺女神雅典娜(Athena)比试技艺。女神织了一幅挂毯,上面绣有威严的诸神群像,而阿拉克尼却织出了诸神的爱情艳事。雅典娜对此大为恼怒,在技艺上又挑不出毛病,就把织物撕成碎片,并将阿拉克尼变成蜘蛛。一说她在绝望中自缢身死,女神出于怜悯松开绳子,绳子化为蜘蛛网,而她本人则变成了蜘蛛。据说意指“蛛形纲动物”的arachnid一词就是源于她的名字,其实Arachne在希腊语中就是“蜘蛛”之意。bantam 矮脚鸡印尼爪哇西北部有个村子,名叫Bantam,是当年荷兰殖民者在东印度群岛(East Indies)的第一块拓居地。据信矮脚鸡原产于此,因此得名bantam,其实Bantam并非矮脚鸡的产地。由于雄性矮脚鸡特别好斗,所以bantam一词现也用于喻指“矮小而勇猛好斗的人”,有时也用作形容词,表示“轻型的”、“小的”等义。bellwether 系铃带头羊该词是由bell和wether构成的复合词,wether今作“阉羊”解,在古英文中则指“公羊”。牧羊人放牧的一个习惯做法是,选择一只能服众的公羊,在它脖子上系个铃(bell),由它在羊群前面带队,这只公羊就叫作bellwether。以后,该词多用来喻指“领头人”、“前导”或“楷模”,即用于褒义,也用于贬义,如指“群氓之首”等。buffalo 水牛,野牛源自葡萄牙语bufalo,一般指“水牛”(包括亚洲的和非洲的)。18世纪欧洲殖民者到北美时,把北美野牛(bison)和水牛混同起来,就将北美野牛也称为buffalo。尽管许多人认为这是一种误称,但buffalo一直作为北美野牛的俗称沿用至今。欧洲人到达美洲时,北美野牛多达六千万头,是平原印第安人经济的主要支柱,以后西进的白人以任意屠杀北美野牛为乐,或取用其皮、肉,有的仅为取食其舌。当时有位猎人William Fredrick Cody,因其善捕野牛,将牛肉供应给修筑太平洋大铁路的工人,被人称为Buffalo Bill(野牛比尔)。到1900年前后,北美野牛已趋于绝迹。这些野牛虽然体大,但极敏捷,稍遇惊扰即行逃窜。猎人们要捕获它们就得施用诡计,迷惑乃至恐吓它们,使其落入圈套,再成群加以擒杀。据此,buffalo一词常被猎人们用作动词,意为“迷惑”、“恐吓”等,1880年左右就已进入英文,成为词汇的一分子。butterfly 蝴蝶在英文中好些有翅昆虫都被称以fly,如gadfly(牛虻),dragonfly(蜻蜓)等,butterfly亦在此列。传说蝴蝶爱吃牛奶、黄油(butter),故英文以butterfly为其命名。butterfly一词源自古英文buterfleoge,由butere‘butter’加fleoge‘flying creature’构成。以上传说也反映在蝴蝶的德语名称之一milchdieb,该词相当于英文milk-thief(偷奶贼)。另有一种解释说,其中butter是指蝴蝶或其排泄物的颜色。canary 金丝雀约公元前40年,毛里塔尼亚国王朱巴二世(Juba II,50BC?-24BC?)来到北大西洋东部的一个火山群岛探险,发现岛上的野狗多得惊人,就把其中最大的一个岛命名为Canaria,意为“狗岛”。古罗马作家普林尼(Pliny the Elder,23-79)在其作品中对此曾有转述,以后这一群岛就以此为名,15世纪沦为西班牙殖民地后也一直沿用此名,译成英文作Canary Islands(加那利群岛)。金丝雀原产于Canary Islands,16世纪被引进英国时,得名canary birds,到了17世纪中被简称为canary。该鸟野生者多为绿色,家养者则多为淡黄色,故canary也常用以表示“淡黄色”。可见,canary一词源于岛名,其根源则可追溯到意为“狗”之拉丁文canis。cardinal 红衣凤头鸟,北美红雀一词多义现象在英文中十分普遍,cardinal即为一典型例词。它源于拉丁语cardo‘hinge’(铰链),从cardo的派生词cardinalis(和铰链有关的)演变而来。由于铰链对机器、门窗等所起的关键作用,所以cardinal最早的词义之一是“主要的”、“基本的”。在罗马天主教的教皇选举中,其结果取决于(hinged on)红衣主教。红衣主教是天主教的最高主教,分掌教廷各部和许多国家重要教区的领导权。因此,cardinal一词最初喻指“红衣主教(的)”。由于红衣主教身着红色长袍,cardinal又进一步引申为“深红色(的)”、“鲜红色(的)”。18世纪在新大陆发现了一种红羽毛的鸟,cardinal又成了鸟名,即“红衣凤头鸟”或“北美红雀”。  flamingo 火烈鸟 ( fluh-MING-goh )  这是一种羽衣粉红或深红的热带大涉禽,汉语作“火烈鸟”或“红鹳”。据传,西班牙探险者初次在新大陆见到这种鸟时想拿佛兰芒人(Fleming)开玩笑,便给它取名Flamenco,在西班牙语中的意思就是“佛兰芒人”,因为佛兰芒人肤色微红,还素以性格活跃、衣着艳丽著称。该词转由葡萄牙语(flamengo)进入英文后演变为flamingo这一形式。人们从民俗语源的角度往往将flamingo和西班牙语flama‘flame’(火焰)相联系。若将flamingo的词尾-o去掉,便是flaming,该词在英文中有“火红的”、“火焰似的”之意,这正合该种鸟的羽色合佛兰芒人的肤色。    greyhound 灵犭是 ( GRAY-HOUND )  从结构来看,一般人都会认为该词是个复合词,由grey(灰色的)合hound(猎狗)二词组成。这是一种身体细长而善跑的狗,汉语称为“灵犭是”,但多数的贸色并不是灰色的。该词第一成分grey-和颜色词grey无甚联系,在古英文中作grig-,源自古斯堪的纳维亚语grey,意为*****(母狗)。之所以称之为greyhound并非因为其毛色,而是因为人们常把它当作育种母狗来饲养。    guinea pig 豚鼠 ( GIN-ee - )  它不是一种pig(猪),也不是原产于西非Guinea(几内亚),而是一种汉语叫作“豚鼠”的小动物,原产于南美洲。运载几内亚黑奴到南美洲的欧洲船在回程时首次把它从南美洲带往欧洲,很可能是人们混淆了Guiana(圭亚那)和Guinea这两个名称,故有guinea之误。之所以称之以pig则可能是因为这种小动物长得圆滚滚的,与其说像鼠,不如说像毛茸茸的小猪。由于它常被用来做各种科学试验,所以20世纪初以后guinea pig一词开始用以喻指“试验品”或“供试验的人(或物)”等。    jackal 豺 ( JAK-uhl, -AWL )  长期以来,人们在词源上一直把jackal和jack相联系,可能是因为jackal既指“豺”,也喻指“走狗”,而jack则可指“人”、“仆人”等,见于jack-in-office(神气活现的小职员)、jack-of-all-trade(杂而不精的人)、jack tar(水手)等词。究其根源,jackal实源自波斯语shagal,从土耳其语chakal演变而来。其它一些语言也借用了该词,如法语chacal,德语作Schakal。    kangaroo 袋鼠 ( KANG-guh-ROO )  据传,英国航海家库克船长(James Cook,1728-1779)1770年在澳洲东海岸昆士兰(Queensland)探险时,第一次见到袋鼠这一奇异动物跳跃着穿过灌木地带,向一个土著居民询问它的名字。对方回答道:“kangaroo”,他要表达的意思是“我不知道”或“我听不懂你的话”。库克却以为这就是当地人对该动物的叫法。kangaroo就这样进入了英文,成为这种澳洲特有动物的名称。这则故事在库克和随他作环球旅行的英国博物学家、探险家班克斯(Sir Joseph Banks,1743-1820)的航海日志里曾有记录,kangaroo原作kangooroo。一些词源学家认为这一说法具有一定的可信性,因为除此之外没有更好的解释。其它一些欧洲语言的相应词恐怕亦源出于此,如法语作kangourou,德语作Kanguruh,西班牙语作canguro等。

主要包括微体动物及软体动物化石。第四纪研究比较多的微体古生物是有孔虫和介形虫。第四纪的绝大部分有孔虫和介形虫都是现生种,因而从生物地层学的原则来研究这些微体动物化石,常常是难以奏效的。然而这些生物对于环境的反映却很灵敏,它们所反映的生态环境以及由此而揭露的气候条件,常常是研究沉积岩相和古气候的重要依据。从气候地层学原则出发划分地层,特别是对深海沉积的研究,这些生物具有很重要的意义。(一)第四纪有孔虫有孔虫是原生动物,具有能保存成为化石的壳体(钙质、瓷质、砂质)。有孔虫全部为海相,或与海相有关连(可从海水中冲入),因此是研究海相地层的重要生物标志。有孔虫的生活方式,一部分营底栖生活;一部分是浮游生活。底栖有孔虫随海水深度变化有不同的组合群体。因此,可以根据地层中有孔虫化石组合,划分地层形成时的环境及所处的大陆架部位。例如我国南海底栖有孔虫,可以划分出下述各带:滨海—浅海为假轮虫-星轮虫带;浅海为小泡虫-葡萄虫带;大陆坡为砂环虫-圆形虫-幼体虫带。研究不同海域现代底栖有孔虫的深度分带,有助于分析第四纪有孔虫的生态环境,并恢复其古地理。底栖有孔虫具深度分带性见表10-3。表10-3 底栖有孔虫的深度分带(据Walton 1964)(优势①:指个体最多的一个种在组合中所占百分比)近年来,我国东部第四纪有孔虫的研究对于确定海浸的次数及范围,正确划分第四纪地层起了重要作用。例如华北平原的有孔虫,目前已知多达120种,其中绝大部分营底栖爬行生活。其化石以希望虫科(Elphidiidae)、小粟虫科(Miliolidae)、九字虫科(Nonionidae)、轮虫科(Rotiliidae)、圆盘虫科(Discorbidae)的化石比较丰富,占全部有孔虫的95%以上(图10-54)。这些有孔虫大多生活于海水较浅的环境中。根据其属、种的组合情况,可以将其分为三种不同的生态环境类型,即浅海类型、淡化的近岸浅海海湾类型和边滩潮浦类型。这三种类型有孔虫群在一次海浸过程中,依次侵入和退出,在剖面上呈平放的“V”字形楔状侵入陆地,有时还有若干分叉。从它们的分布不仅能圈定海进范围,而且可以判别海面升降的波动状况。图10-54 我国第四纪常见的有孔虫1—阿卡尼五块虫,圆形亚种(a为多室面视,b为口视×100);2—块虫三角种(a为多室面视,b为口视×100)3—普拉特块心虫(a为侧视,b为口视×45);4—挪威抱环虫(a为侧视,口视×60);5—强壮箭头虫(侧视×60);6—凹陷圆形虫(a为背视b为壳缘视,c为腹视×80);7—施罗特假轮虫(a为背视,b为壳缘视×30);8—毕克卷转虫(a为背视,b为壳缘视×80);9—多角口室虫(a为背视,b为壳缘视×60);10—多瘤九字虫(a为侧视,b为壳缘视×80);11—江苏筛九字虫(a为侧视,b为壳缘视×80);12—小九字虫(a为背视,b为壳缘视×80);13—异地希望虫(a为侧视b为壳缘视×80)浮游有孔虫主要分布于大陆架以外,其化石的丰度随着远离大陆架而增大,在大陆坡以外,浮游有孔虫占绝对优势,其含量超过90%以上。浮游有孔虫的活动范围较少受地带性因素的影响,因此对比时所受的局限性也较少。有孔虫中大多数种、属是广域性的,它对水温及咸度的反映并不明显,但有一部分有孔虫生活于冷水海域的如饰带透明虫(Hyalina bolthica)、具瘤先希望虫(Protelphitium tuberculatum)、异地依格尔虫(Eggerella advena)、鳞砂轮虫(Trochaminina)、泡抱球虫(Globaigerina bulloides)等。在太平洋西部,随着寒流在日本海西部分布着一个冷温区系,以秀箭虫(Sagittaelegans)、北方抱球虫(Globigerinabo realis)等冷水种为代表。这一区系对这国第四纪时期组合群体的构成,有很密切的关系。冷水有孔虫常与广域性有孔虫共生。有些有孔虫可能发现于冷水中,但也见于温带水域中,因而不具典型的示冷性质。如冷水面颊虫(Buccellatepida)多数学者曾认为它是冷水种,但研究我国海域的现代有孔虫以后,发现它是优势种,所以不能作出它是冷水种的结论。暖水种有孔虫有暖水卷转虫(Ammonia tepida)、红拟抱球虫(Globigerinoidesrubra)、门氏圆球虫(Globorotalia menardii)、星轮虫(Asterotalia)、施罗德假轮虫(Pseudorotalia schroeteriana)、罗索设尼卷转虫(Ammonia rolshauseni)等,以及各种大有孔虫如货币虫(Nummulites)等。我国南海、东海外海广大水域的浮游有孔虫群属于热带区系,门氏圆球虫、肥胖箭虫(Sagitta en flata)、六翼箭虫(Shexaptera)为区系代表种。这一区系分布范围与黑潮流系的分布密切相关。分布区北界约相当于冬季表层15℃等温线,或表层年平均20℃等温线,大致与黑潮的锋面相符合。这一有孔虫群对我国东部第四纪海相层中有孔虫群的构成,有很大影响。也对研究第四纪海相层中有孔虫群的构成,有很大影响。也是研究第四纪时期环太平洋暖流变化历史及探讨全球性气候格局变迁的重要资料。黄海、渤海位于中纬度带,大部分水域远离黑潮,又有黄海冷水团存在其中,冬季表层水温1℃—10℃(渤海—南黄海)。其浮游有孔虫属于暖温带区系,以强状箭虫(Sagitat crassa)为代表,缺少特别喜暖与喜冷的属、种。近年来的资料表明,同一种有孔虫的壳旋方向不一致,可能代表其生活的水温情况不同。例如截锥圆球虫(Globorotalia truncatulinoides)其左旋壳代表温暖水域,右旋壳代表寒冷水域;而厚壁抱球虫(Globigerina pachyderina)右旋壳在温暖海域中居多。也有人研究有孔虫壳质变化用来判断温度,如GO格里尔(Greiner)研究墨西哥湾底栖有孔虫的壳质。这是一种尝试,但并未获得普遍证实。同时有人认为有孔虫的壳质与环境及有孔虫种、属关系密切。各种研究表明,从有孔虫的生态习性研究恢复古气候及古地理环境,是当前第四纪有孔虫群研究的重要动向。在研究有孔虫的生态环境时,近年来人们非常注意一种广盐性的,可生活于淡化或极度淡化水域的半咸水有孔虫。这种半咸水有孔虫组合具有下述特征:①所见有孔虫都是广盐性的,适于淡化水域中生活;②种属单调,但个体很多;③壳型变异很普遍,壳体普遍小而薄;④与半咸水域广域性介形虫共生。例如我国最早发现的第四纪半咸水有孔虫化石是山西运城盆地的山西九字虫(Nonion shansiensis),后来这一种有孔虫又发现于泥河湾及怀来后郝窖的泥河湾层之中,成为我国第四纪古地理研究中一个新的课题。半咸水有孔虫的出现,代表这一沉积与海洋有着密切的关系,可能是河口、边滩、潮浦、泻湖中残留的种属,在淡化水域中变异、繁殖而成,也可能是其它原因(如生物、台风等)带来的。这是近年来研究有孔虫生态环境中的一个重要方面。现将属于半咸水中的有孔虫,列表说明之(表10-4)。表10-4 主要半咸水有孔虫的盐度分布范围(据Murray 1968 Levy 1971等改编) (摘自“地层古生物论文集”第二辑2)半咸水有孔虫群的研究对第四纪过渡相沉积的研究很有意义。(二)第四纪介形虫介形虫是一种微体节肢动物,它生活在较固定的水域中,分布十分广泛,从其生活环境来看,有淡水介形虫,也有半咸水、咸水介形虫。介形虫不同属的生活习性,侯佑堂曾作过一个简要概括的归纳(图10-55),他把介形虫的生活环境分为淡水湖环境,半咸水湖及河口半咸水环境,海相环境。海相介形虫又分为底栖及浮游两大类,底栖介形虫按其生活深度再进一步加以划分。介形虫对于气候环境也有一定反映,但对它的研究较有孔虫大为逊色。这项研究工作必须从现生介形虫的生活环境及地理分布着手,可惜这方面的工作在我国十分薄弱。在研究有孔虫及介形虫组合时,不仅需要鉴定其属、种,而且还应注意区别它们的保存状态。作为生态环境的研究,应注意区别它们属于异地埋藏还是原地生活的,这是对生物群所代表的生态环境作出正确判断的重要前题条件。因此,在利用微体古生物作生态环境分析时应该认真判断它:是否有经过搬运分选的证据;壳体的完整性及冲蚀的痕迹;以及不同生态环境的种属混杂情况等。同时,应当尽可能采用定量样品分析,作出数量的统计,以便确定属、种的优势度及古生物的丰度。(三)第四纪软体动物软体动物有的生活于海滨;有的生活于湖泊、沼泽、河流等水体中;也有的生活于旱地。在第四纪地层中经常可遇到斧足纲及腹足纲的介壳(图10-56图10-57)。在缺乏哺乳动物化石的情况下,这些软体动物的遗骸对于研究与对比第四纪地层就显得很有用了。图10-55 介形类属的生活假想图(据侯佑堂)1—淡水湖;2—河口淡水及半咸水;3—半咸水湖;4—海水0-20m;5—20-50m,6—50-100m;7-100-200m;8—200m以上;9—浮游动物群由于第四纪时间短促,大洋海生软体动物演化很不显著,种、属绝灭很少,绝大多数为现生种、属。在内陆水盆和半封闭海盆中的软体动物,由于环境变迁频繁,所以演化与变化也比较明显。如欧洲的北海、黑海、地中海、黑海等,根据软体动物群的变化,比较详细地研究了这些水盆地的历史。陆生软体动物也有变化,但系统的研究却较少。总的来看,第四纪的软体动物绝灭属、种较少,愈接近现代,绝灭种愈少,所以单凭个别化石难以确定地层的时代,常常需要用统计的办法,统计绝灭属、种的百分比来确定地层时代的先后顺序。这种统计方法仍然是基于生物地层学原则的百分比法。例如华北地区早更新世与泥河湾动物群共生的有塘螺(Limnaeus)、平卷螺(Planosbis)、对丽蚌(Lamprotula antiqua)、大楔蚌(Cuneopsis mazimus)、河蚬(Corbicula fluminen),其它地区还有丁氏丽蚌(Lmamprotula tingi)、巴氏楔蚌(Cuneopsis barbeuri)、新楔蚌(Canginensis)。中更新世黄土中有直隶扁卷螺(Planorbis chihliensis)、周口店蜗牛(Helix choukoutiensis)、小扁螺(Pupamiora)等,其中对丽蚌、大楔蚌、直隶扁卷螺都已绝灭。N·H·俄德诺在研究华北下更新统软体动物化石组合后指出,其现生种占76%。这都是采用百分数统计法描述第四纪地层中软体动物化石群的实例。图10-56 华北常见的第四纪软体动物化石之一1—瓦变蜗牛;2—截口土螺;3—方格短沟蜷;4—扁旋螺;5—琥珀螺对软体动物的生态环境及其所代表的气候条件的研究,在第四纪研究中有重要意义。例如,利用海相软体动物化石鉴定海相层,确定潮间带及古海岸线位置,其准确性很大而且利于在野外观测。也有人利用不同生态类型的陆生软体动物及淡水软体动物的含量百分比,说明沉积环境,并根据软体动物现生种的地理分布,恢复其生态环境,探讨沉积时的古地理、古气候状况。对陆生及淡水软体动物,有人划分为静水型(如圹螺、平卷螺)、动水型(如大楔蚌、对丽蚌)、沼地型(如瓦娄蜗牛)、旱地型(如周口店蜗牛、小蛹螺等)。采用百分比法统计,可以看出生态环境变化的界线,有助于据此划分地层。对第四纪海相软体动物的研究,可以划分出一些冷水种和暖水种,这也是根据现生种的地理分布作出的判断。例如生活于欧洲北海-波罗的海域的一些软体动物,如美人蛤(Cyrpina)、刀蚌(Joldia)、绞蛤(Candium)等,都被视为冷水种。其中冰岛美人蛤[Arctica(Cyprina)islaodica]是一种营钻孔生活的北方典型冷水种软体动物。在第四纪初期,发现于地中海岸的意大利“卡拉布里”阶地层中,并以此作出了第四纪初期中欧气候显著变冷的结论。有些软体动物是暖水种,例如在华北平原的第四纪地层中发现生活于我国黄海以南至福建沿海的雪蛤(Chione )、伊萨伯利雪蛤(Cisabellium)、短齿蛤(Brachydontess )不等蛤(Anomia )、扁玉螺(Neverita )等,在现在的渤海海域内并无这些生物。因此可以判断,这些海相层沉积时气候温暖,与现今黄海、东海沿岸相似。对于软体动物群中化石组合的气候类型进行数量统计分析,也是一种划分地层的有效方法。对于有孔虫、介形虫和软体动物群进行数量分析,以判定第四纪地层。除在少数情况下可以利用生物的绝灭种及现生种的比例关系进行地层划分外,多数情况下,都是对生物的气候类型及生态类型进行数量统计并进行地层划分。前者是基于生物地层学原则,后者是基于气候地层学原则。按气候类型划分的地层单位属于气候地层组,不是生物地层单位,不能作为建立生物地层标准剖面的依据。图10-57 华北常见的第四纪软体动物化石之二6—长萝卜螺;7—纹沼螺;8—楯螺;9—河蚬;10—丽蚌;11—榧螺;12—缘螺;13—笔螺14—泥蚶;15—光滑蓝蛤;16—缢蛏;1—陆生软体动物;2-10—淡水软体动物;11-16—海相软体动物

无脊椎动物论文摘要怎么写

生物:从海鞘到我们之路--比较基因组学之研究 编辑 Gene 报导 脊椎动物的无脊椎近亲海鞘的基因组被定了序,让科学家有机会利用比较基因组学的方法,来研究脊椎动物的起源与演化。发表在Science的海鞘Ciona intestinalis基因组研究结果是由国际团队所完成的,它是第七个基因组被定序的动物,主要由美国能源部附属基因组研究所、加州大学柏克莱分校分子及细胞生物学系、京都大学动物系和日本的国家遗传学研究所所领导,并且有别外二十几家研究单位合作进行,参与者有87人,分布在五个国家。有了海鞘的基因组,透过和人类或其他动物的比较,科学家能够进一步了解人类大脑、心脏和神经及免疫系统等的起源和演化,并且更了解脊索动物和脊椎动物的一般发育。柏克莱加大的遗传学和发育学教授Mike Levine说道,海鞘在生物学家心中享有特别的地位,因为它提供了无脊椎动物和脊椎动物的演化联系。当你看到其成体时,会以为那是简单的动物,亚里斯多德就以为它是软体动物,但当你看到其胚胎发育,它显然是复杂的高等动物,俄国生物学家Alexander Kowalevsky就认出了其幼虫尾的脊索。它们是我们很古老的表亲。五亿多年前,动物开始快速演化,成为三、四十个体制相异的门类,至今现生的动物界可以划分为35个门。其中不具有脊椎(或脊索)的34个门统称为无脊椎动物,而剩下的就是脊索动物门了。脊索动物有四个主要共同特徵:脊索(notochord)、背部中空的神经索(dorsal, hollow nerve cord)、咽裂(pharyngeal slit)和肛门后肌肉质的尾部(muscular postanal tail)。脊索动物又分为三个亚门:一是头索动物亚门(Cephalochordata),又称无头类(Acrania),以文昌鱼为代表;二是尾索动物亚门(Urochordata),又称被囊类(Tunicata),例如海鞘,这两类都是原始的脊索动物,不具有脊椎;第三个就是我们最熟悉的有头类(Craniata)之一的脊椎动物亚门(Vertebrate),包括鱼类、两生类、爬虫类、鸟类和哺乳类。但脊椎动物却走上了另一条不同的路子,与头索动物及尾索动物相较,脊椎动物的神经系统前端特化成复杂的脑,以及与脑相关联的感觉器官,如眼、耳、鼻等,对环境有更灵敏的反应能力;运动器官也更精巧,以配合感觉器官的改变;大脑外有颅骨保护、脊索演变为分节的脊椎、内骨骼保护著体内器官,这些特徵都使得脊椎动物比其它脊索动物更具环境适应力,使得脊椎动成为脊索动物这一门中,种类和数量最发达的一支。化石记录显示,公认最早出现的脊椎动物是75亿年前的奥陶纪的介皮类(Ostracoderms),它们在海洋中行底栖生活,身披厚重的外骨骼,没有上下颔,也没有胸鳍、腹鳍等可活动的偶鳍。与介皮类亲缘关系最接近的脊椎动物是无颌纲(Agnatha)的盲鳗(Hag fishes)及八目鳗(lampreys),它们的脊椎还是软骨质,是相当原始的脊椎动物。到了95亿年前的志留纪(Silurian)末期,地球上出现了一群具有上下颔的鱼类,这是一项极重大的变革,使原本行过滤生活的脊椎动物成了活泼的猎食者,同时也演化出了可活动的偶鳍,使得活动更灵活。这些鱼类包括已灭绝的盾皮类(Placodermi)、部份现生的软骨鱼类(Chondrichthyes),如鲨鱼、魟等,以及在现代海洋及淡水中称霸的硬骨鱼类(Osteichthyes)。硬骨鱼类的其中一支又慢慢往陆地发展,演化成了今天陆地上的各种脊椎动物。过去许多动物学家认为脊椎动物的祖先很有可能是演化自尾索动物。海鞘的成体虽然没有明显的脊索,但是其幼虫的尾部却明显地带著一根脊索。有人认为在寒武纪早期,尾索动物的幼虫发生了幼体生殖(paedogenesis)的现象,其生殖器官在变态之前就成熟了。经过了天择,尾索动物的幼虫发展出了分节的肌肉和强壮的骨骼来支撑身子,并且因为头的形成对适应环境有相当的优越性,就演化出了带头和内骨骼的脊椎动物。美国能源部附属基因组研究所所长Eddy Rubin认为虽然它们和我们外观大不像,但是还是有许多特徵同脊椎动物是相同的。透过基因组的比较,我们可以在分子的层次上了解与对方的关系,并且研究这些相似的系统和基因是如何从五亿多年前的共同祖先演化而来的。身为尾索动物的海鞘分布在世界上各浅海中。桶状的海鞘附著在岩石、防波堤、般舶和海底,并利用篮状滤食器滤食浮游生物。海鞘卵受精一天后就发育成只有二千五百个细胞的小幼虫,不久后就找个地方定居下来变态成为成体。海鞘的基因组由一百六十万个碱基组成,大约只有人类的廿分之一,只有最小基因组脊椎动物河豚的一半。其中一百一十七万个碱基组成约有一万六千个基因,有八成在人类和其他脊椎动物中也可找到。不过其基因数只有人类的一半。美国能源部附属基因组研究所的计算基因组学主任Daniel Rokhsar说道,海鞘基因组会如此苗条的原因是,它大部分在脊椎动物中有好几个贝份的基因,在海鞘中,只有一份。而多出来的贝份,可能会突变掉或消失,或者演化成负责其他功能。从海鞘基因组中,我们可以看出人类这系谱中的新进展,例如有些特定的免疫系统和神统系统基因在海鞘就找不到,这显然是脊椎动物的新设备。脊椎动物的复杂性也可能是从大量的基因复制而产生的。海鞘没有许多决定脊椎动物身体结构的重要Hox基因。有一些Hox基因单独存在,另一些却消失了。然而海鞘也有类似於脊椎动物的感光基因,和其他形成心脏和甲状腺的基因。但是海鞘利用血蓝蛋白,而非红血球来运送氧气,并且缺少制造胆固醇和组织胺的基因。在某些方面,海鞘和细菌、真菌和植物的相似度比和脊椎动物还来得高:制造纤维膜以支持进食吸管的基因,就和制造纤维素的基因很类似,这样的基因在其他动物是找不到,有可能是从植物等水平基因转移来的。Levine就认为海鞘基因组的分析结果和1871年达尔文在The Descent of Man一书中的主张完全吻合,达尔文主张脊椎动物和海鞘有共同祖先,而一支演化成海鞘,另一支在脊椎动物纲开花结果。

观老虎感想 兄弟们!请一定到桂雄森雄虎山庄来看看,你绝对震撼而不会后悔!! 本人,边城游侠!是彻头彻底的大型猫科动物的深深迷恋者!和世界上千百万所有好奇心强烈的同党一样,对老虎和狮子的战斗力的好奇超过了一切!我本人在有生以来看到的老虎和狮子是在沈阳和北京动物园内(92年我在东北读书),那时我看到的老虎都是举世闻名的西伯利亚老虎,当然,它们比我看到的非洲雄狮子要大得多!后来,我毕业后做销售工作有机会在全国各地出差,我分别在上海野生动物园,广州动物园,武汉野生动物园,长沙动物园,西安市动物园(现已经迁移到郊外),西宁市动物园,石家庄市动物园,郑州市动物园,苏州动物园,无锡动物园,大多数我所看到的老虎和狮子的体重和身材似乎差别不大,而且老虎和狮子的数量也偏少!{{{只有其中无锡动物和西宁动物园的有两只老虎很大,肯定远远超过了我所看到的上面的动物园中的老虎和狮子的体型!我认为:它们的体重肯定在320KG以上!(西宁动物园的那只老虎,我出差在04年底再也没有看到过,我问过园内的饲养师,他说那头巨大的公虎已经去世!)}}}----这让我非常困惑!----因为;猫科动物学家的解释是:老虎体型一般肯定大于狮子! 作为一名大型猫科动物的半个专家,今年三月初,我很庆幸,我能在我的有生之年到风光迷人的桂林市作一次“罗马假日”般的浪漫旅程,让我更加庆幸的是,我从当地导游的介绍中得以知道,桂林市去两江国际机场的路途中有目前全世界最大的老虎繁殖基地--桂林雄森雄虎山庄(1100多头老虎,200多头狮子,200多头熊),它是我国农业部赞助的两大老虎繁殖基地之一!(另外一个是黑龙江东北虎林园,我现在暂时没有去过,但我想我会在近几年出差去看看的,趁52号和53号两只老虎王还在世,听说它们的体重在350公斤以上!),3月5日早上9点我买了门票(80元)进入园区,导游介绍说,左边的这个占地大约30亩的园区是华南虎园区,随着导游的指向看去,我的眼睛被深深地震撼:我敢说,我和任何人打赌100美元!这里的上百头华南虎的体型绝大多数肯定远远超过了非洲的雄性狮子!!!其中有十几头华南公虎显得好像比一般的东北虎还要大!这让我非常非常震惊!!我驻足良久,随着远处人群的惊呼和老虎的长啸,来到东北虎散养区中的(分五个区)野生驯化区,每天早上照常的单只东北虎叼牛游戏刚好结束:那只编号为3号的巨大公虎已经在不到十秒钟的时间将一头成年的水牛的生命结束,两只巨大的前掌正踏在牛的尸体上向隔壁散养的两百多头狮子仰天长啸!场面极为壮观!!!我用我,对大自然的敬畏和诚实的眼睛,向全球的各位朋友和兄弟发誓:那些狮子,或者说非洲雄师的体型和力量,在巨大的东北虎面前简直不值一提!因为在我看来,狮子和老虎根本不在一个量级!(我当时就站在老虎和狮子的天桥中央,甚至离狮子们更近些) 这一天,我还陆续游览了成年东北虎区,成年孟加拉虎区,笼养的成年华南虎区,它们的未成年的3~4岁的半成虎区,以及幼虎区。我反复行走并仔细观察,我在编号为7区和11区的成年东北虎区看到几只更加巨大彪悍的公虎(我敢说其中有一头东北公虎的体重肯定在400KG以上,那气势简直可以用气吞山河来形容!!),说真的,我不知道它们为什么被单独散养,我估计是因为它们更加强壮而威胁到其它老虎的生命安全!因为我看到,其它很多的老虎区有瘸着腿子或者三条腿的同样很大的公虎!有些老虎的尾巴已经被咬掉了!我用我这一天的实地观摩向大家说:老虎,其体型更加彪悍强壮,它们的腰腹就象载重汽车的硬弹簧钢板一样结实而爆发力极为出众!而狮子在腰腹的力量肯定远逊老虎(狮子的腰腹缺乏弹性)!老虎的前肢要比狮子粗壮得多,这使得它们看起来更加体魄雄浑!老虎的后肢比狮子更长些,这也说明为什么老虎的弹跳比狮子更加出色!同样,我看到这个动物繁殖基地的老虎的脖子要比同园区狮子的脖子更为粗壮,尤其是成年的老虎! 在我当天的感触看来:一只成年的孟加拉虎或者说这个园区的我所看到的成年的华年虎的力量就足以战胜一个狮群的所有公狮,并统治这个狮群!因为在我看来,桂林雄森雄虎山庄的200多头狮子和老虎的质量体积根本不在一个量级! 以上,是我在3月5日这一天的个人感慨!当然,我本人从小也是个推崇老虎比狮子更加出色的人(因为我是炎黄子孙),但我必须说明,在之前我并非一味认为老虎能赢得了狮子,因为我从来就坚持认为:事实终将胜于雄辩! 这次桂林雄森雄虎山庄之行,我感觉非常非常值得!!!因为这次旅途让我消除了疑虑,用铁的事实感觉到了老虎更加摄人心魄的强大战力!!!!! 我建议:凡是对老虎的体型和力量有丝毫怀疑的人,都能在有生之年来桂林雄森雄虎山庄看看,让科学的事实说话!让你们的眼睛说话!!! 我们人类,应该对这种的拥有强大力量的猫科动物深深敬畏!因为它们,是自然界的千万年进化的完美典型!是自然的最后杰作!!! 最后,我提议:我们,所有的大型猫科爱好者应该捐款:我们可以在全国的所有动物园中免费提供并安装大型的平台电子秤,这样当人们在各地的动物园中游览时,他们就会很清楚地看到每只老虎和狮子的真正重量,让事实来说话!----只有这样,一个喋喋不休的老虎和狮子的重量和战力的话题才会有所收敛和克制!!!

无脊椎动物的进化论文摘要写什么

无脊椎动物进化中的模糊问题思考 【摘要】 无脊椎动物是动物界的低等类型、最庞大类群。本文根据古生物学、现代生物学和生物进化论研究成就,就无脊椎动物起源、三叶虫、头足类、昆虫进化过程中的模糊问题作了逻辑推理思考。 【关键词】 无脊椎动物; 古生物学; 化石; 动物进化; 基因突变;如需要全文,可以再联系

与脊椎动物有相对清晰的进化路线不同,无脊椎动物因为体型较小、出现时代早、不易形成化石(不少种类无骨骼与外壳)等原因,没有非常明显的进化路线,而且因为寒武纪同时突然出现了大量不同种类的无脊椎动物(寒武纪大爆发),导致至今“爆发式”与“渐进式”两种学说仍争论不休,只能根据不同种类的身体结构、神经系统的复杂程度来分个大概的进化先后吧。总的来说无脊椎动物中节肢动物门(昆虫等)和软体动物中的头足纲(章鱼、乌贼等)被认为进化的比较高等吧。

无脊椎动物的品种类繁多,进化的过程中都相互不同,有关无脊椎动物科研工作者才能正确的回答你,我有一个脊椎动物的活化石,是四亿年前冰川时期的,还是一对雌雄化石,遗体容貌十分清晰,太神奇了

无脊椎动物的进化论文摘要怎么写

在无脊椎动物类群中,腔肠和扁形动物仅具有上皮细胞。至线形动物,为适应寄生或摩擦阻力相对大的自由生活,它们的体壁开始产生角质化。环节动物角质化已经较深了,并且有了疣足和刚毛为运动器,但仍不足以被称为外骨骼。真正意义上的外骨骼从节肢动物时开始出现并大为繁荣。如甲壳类的甲,角质壳中有钙盐等积累,因而十分坚固。昆虫纲动物具几丁质外骨骼,外部的几丁质鞣化因而十分坚固。这些外骨骼保护机体的同时会限制动物生长,因而节肢动物存在周期性蜕皮现象。另外,分节的附肢处外骨骼形成关节,关节处柔韧性较强。软体动物具独特的外套膜,外套膜分泌钙质产生钙质外骨骼,即蚌壳或蜗牛壳之类的,以保护柔软的身体。棘皮动物作为无脊椎动物最高等的类群产生了内骨骼,这些中胚层产生的骨片穿过体壁形成棘刺或棘钳,有保护或清理身体污物的作用。

无脊椎动物的品种类繁多,进化的过程中都相互不同,有关无脊椎动物科研工作者才能正确的回答你,我有一个脊椎动物的活化石,是四亿年前冰川时期的,还是一对雌雄化石,遗体容貌十分清晰,太神奇了

我怎么知道

相关百科

热门百科

首页
发表服务