首页

> 论文期刊知识库

首页 论文期刊知识库 问题

测量的核心技术是传感器

发布时间:

测量的核心技术是传感器

‍‍电涡流位移传感器厂家了解到随着我国智能电网的逐步启动,将带动电力电子等相关行业的快速发展,这一点完全符合国家投 建智能电网的初衷。智能电网将成为传感器产品的另一市场高低。智能电网则符合上面的需求,它不光能形成传感器规模化应用,还能形成连带效应,产品的价格必然能够降低。对于如何才能拿下这个市场,传感器企业则要做好技术储备,也从侧面带动了传感技术的发展。目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本、高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。‍‍

前瞻网摘要:国内传感器应广泛的应用于机械设备制造、家用电器、科学仪器仪表、医疗卫生、通信电子以及汽车等领域。近年来,传感器产业链下游行业发展迅速,市场需求给力,需求市场的旺盛将带来传感器制造行业的蓬勃发展。传感器广泛应用于社会发展及人类生活的各个领域,如工业自动化、农业现代比、航天技术、军事工程、机器人技术、资源开发、海洋探测、环境监测、安全保卫、医疗诊断、交通运输、家用电器等。据前瞻产业研究院发布的《中国传感器制造行业发展前景与投资预测分析报告》显示,近年来,国内传感器应用主要分布在机械设备制造、家用电器、科学仪器仪表、医疗卫生、通信电子以及汽车等领域。近年来,物联网技术发展提上议程,给传统的家电行业带来新机遇,家电物联网将是家电行业未来的一个发展趋势。传感器是家用电器获得信息的主要来源,对家电产品的智能化水平有着至关重要的作用。利用传感器提高产品性能是智能家电技术近年来的发展重点,传感器技术作为物联网的核心技术,家电物联网的发展必定会带动相关传感器技术的大规模应用,传感器在家电领域发展前景广阔

有视觉的,一维的或者2维的距离传感器,还有kaman电涡流的位移传感器,看你怎么分类了。

传感器是能感受规定的被测量并按一定规律转换成可用输出信号的器件和装置, 它是测量技术的前端, 也是信息技术的源头, 传感器在航空领域有着广泛的应用。除了红外、激光、图像、雷达探测等机载光电、射频传感器系统外, 那些基于压力、温度、加速度、角度、位移、油量、生物敏、化学敏等原理的机载传感器, 主要用于测量飞机的飞行姿态、状态、导航定位参数、动力装置及燃滑油系统工作参数, 测量武器火控系统以及飞控、液压、电源、起落架、环控、救生、安全与防护等机载设备系统的工作参数, 供驾驶员直接了解飞机的有关状态, 对各种机载装置和系统进行控制。机载传感器安装在飞机的各个部位, 应用在飞机的各个不同的系统中。 一方面, 同一性质的传感器可能要应用在不同的机载系统和部位; 另一方面, 同一系统、 同一部位又可能设置多个相同的传感器, 以保证系统工作的可靠性与安全性。机载传感器是飞机各功能系统的前端信息源。机载传感器按功能分类可以分为:飞行状态、飞行姿态信息及其操纵系统工作参数传感器; 导航、定位参数传感器; 动力装置及燃油滑油参数传感器; 用于液压系统、电气系统、 环控系统、起落架系统、 救生系统、 安全与防护系统等工作参数传感器。机载传感器按被测量性质分类可以分为:物理量传感器: 包括压力、力、力矩、位移、速度、加速度、角位移、角速度、转速、温度、 液位、密度、流量、电量、光量、物态、方位、距离、地理位置传感器等。化学量传感器: 包括成份传感器、烟雾探测器、火焰探测器等。机载传感器技术是属于由技术推动发展的技术领域之一, 它超前于飞机的发展以向飞机提供先进的货架产品。这种超前发展必须依靠健全的科研体系、 雄厚的技术力量和坚实的科研条件作为后盾的。如国外近期正在发展的机载嵌入分布式大气数据传感器、 智能蒙皮(自适应分布式柔性传感器结构)、 各种光纤式传感器、各种硅微型传感器……等都是在各有关国家鼎力支持下, 依靠各国的雄厚科研实力,突破以新原理、 新结构、 新材料、 新工艺等基础性研究后得以不断更新发展的。二、国外机载传感器技术的发展趋势1992 年, 美国国家关键技术委员会提出的关于美国国家长期安全和经济繁荣至关重要的 22 项关键技术的报告中, 有 6 项与传感器及信息处理技术直接相关。日本政府对传感器技术一直赋予高度重视, 将其列为国家重点发展的六大核心技术 (传感器、计算机、通信、激光、半导体和超导)之一。日本科学技术厅制订的九十年代重点科研项目有 70 个课题, 其中有 48 个课题是与传感器技术密切相关的。西欧各国制订的尤里卡计划也把传感器技术作为重点发展的关键技术之一。 其中, 英国在上世纪八十年代初就成立了国家技术小组(BTG) , 专门协助政府组织和领导技术开发工作。政府对包括微型传感器在内的微电子技术特别重视, 至今已拨出数千万英镑给予重点支持。近些年来, 在世界发达国家持续不断的高度重视与大力投资下, 随着材料科学、 计算机技术、 微电子和微机械加工技术的发展, 传感器技术有了长足的进步。传感器技术正朝着集成化、 智能化、 微型化的方向发展。如美国集成化, 从一方面说, 是利用微电子电路制作技术, 将敏感元件与放大、调制、运算、补偿等单元电路集成在同一芯片, 实现信号变换与信息处理的一体化。 另一方面, 是利用集成电路制造技术和微机械加工技术, 将多个测量功能相同、 相近或不同的单个敏感元件集成为一维线型传感器或二维面型(阵列)传感器, 实现信息多维化, 变单参数检测为多参数检测。智能化, 指能够根据具体情况自主进行自补偿、自检测、自诊断、自校准、量程切换、 远程控制、设定调节、信息储存记忆、双向通讯等多种功能。微型化, 指敏感元件特征尺寸从几毫米到几微米的传感器, 通过 MEMS 技术的支撑, 可以将传感器、执行器与电路在同一衬底上结合, 形成微型集成传感器系统。传感器向集成化、 智能化、 微型化发展, 是以材料科学、 制造技术和理论创新的不断发展为基础的。一些新型传感器伴随着新材料的发展而发展的。 半导体硅是固态传感器的最重要的材料, 其它如石英晶体材料、 超细微粒功能陶瓷、 记忆合金、 功能性薄膜、 超导材料、 高分子复合材料等, 在传感器技术中得到了成功的应用。微电子机械系统(MEMS)技术的发展带来了制造技术的革命性的变化, 使现代传感器技术进入以微电子和微机械集成技术为主导技术的阶段。MEMS技术起始于六十年代, 在近十年内得到了快速发展。 这种从 IC制造技术发展起来的微机械加工工艺, 包含平面集成电路工艺、 薄膜工艺、 三维刻蚀工艺、 固相键合工艺、 整体封装工艺、 测试标定工艺等。 它可使被加工的敏感结构的尺寸达到微米、 亚微米级, 并可以批量生产, 制造出微型化、 可靠性好且价格便宜的传感器。微机电传感器的优良性能与可靠性和它具有的优越的性能价格比, 将比传统的传感器拥有越来越大的市场, 微机电传感器的产业化是传感器发展的必然趋势。伴随着传感器领域技术的快速发展, 新概念、 新原理机载传感器层出不穷, 有力的支撑了各种飞机的研制与发展。 目前, 国外已在机载领域获得应用的新型传感器包括: 嵌入式大气数据传感系统、 硅谐振式压力传感器、硅微陀螺、硅微加速度传感器、超声波式油量传感器、光纤式温度传感器、光纤陀螺、分布式柔性传感器(自适应微型结构)、声表面波加速度传感器等。

传感器的核心技术

传感器的主要技术指标:1、传感器具有防水、抗凝、精确度高、稳定性好、寿命长、适合野外使用等优良性能。2、数据采集终端使用嵌入式操作系统及无线通信收发模块集成,采用模块化设计易扩展,适应多种类型传感器,可以定时休眠和唤醒,可同时滚存数百组数据。3、信息数据传输采用4G频IEEE4传输协议完成区域自动智能组网传输,采用GPRS完成超远距传输和互联网对接传输。4、能源配置有电池、太阳能和电网等多种能源支持方式。5、管理接收主控具有USB口或串口接收环境信息数据,可以扩展终端机和传感器,可以增加和修改传感器公式,可以支持多品种传感器,具有网络接口可以进行互联网应用,可以数据导出,有显示接口可以接液晶显示屏,有硬盘扩展接口可以增加存储容量,有大型数据库系统可以存储和管理大流量数据。6、智能控制器采用模块化设计,具有与主控数据交互功能,能完成多通道、多类型设备的管理和控制,具有人机交互功能,能完成人工控制管理,具有安全工作保障功能,使用嵌入式软件完成可选、可修订的多阶段控制系统。传感器性能指标:  1、灵敏度:指沿着传感器测量轴方向对单位振动量输入x 可获得的电压信号输出值u,即s=u/x。与灵敏度相关的一个指标是分辨率,这是指输出电压变化量△u 可加辨认的最小机械振动输入变化量△x 的大小。为了测量出微小的振动变化,传感器应有较高的灵敏度。   2、使用频率范围:指灵敏度随频率而变化的量值不超出给定误差的频率区间。其两端分别为频率下限和上限。为了测量静态机械量,传感器应具有零频率响应特性。传感器的使用频率范围,除和传感器本身的频率响应特性有关外,还和传感器安装条件有关(主要影响频率上限)。   3、动态范围:动态范围即可测量的量程,是指灵敏度随幅值的变化量不超出给定误差限的输入机械量的幅值范围。在此范围内,输出电压和机械输入量成正比,所以也称为线性范围。动态范围一般不用绝对量数值表示,而用分贝做单位,这是因为被测振值变化幅度过大的缘故,以分贝级表示使用更方便一些。   4、相移:指输入简谐振动时,输出同频电压信号相对输入量的相位滞后量。相移的存在有可能使输出的合成波形产生崎变,为避免输出失真,要求相移值为零或Π,或者随频率成正比变化。

传感器的发展以精准为导向。

公路铁路应用、机械制造、航天航空等都能涉及,具体的话你可以去了解一下真尚有

改革开放30年来,我国传感器技术及其产业取得了长足进步。在“九五”国家重点科技攻关项目中,传感器技术研究取得了51个品种86个规格新产品的成绩,初步建立了敏感元件与传感器产业;2007年传感器业总产量达到93亿只,品种规格已有近6000种,并已在国民经济各部门和国防建设中得到一定应用。 我国传感器产业规模不断增长,技术也不断实现突破,尤其在生物传感器、化学传感器、红外传感器、图像传感器、工业传感器等领域发展十分快速。尽管我国传感器产业取得了众多成绩,但也存在一定的问题,不过产业前景是十分光明的。 我国传感器产业的发展,主要得益于传感器在工业及汽车电子产品、通信电子产品、消费电子产品中的广泛应用。目前流量传感器、压力传感器、温度传感器等市场规模十分大,我国在光敏、电压敏、热敏、力敏、气敏、磁敏和湿敏传感器领域都能够实现批量生产。这些都推动了我国传感器产业的稳健发展。 从地域上来说,我国传感器生产主要集中在长三角地区,而珠三角、京津地区以及沈阳和西安等中心城市近年来传感器产业也在逐渐形成并发展。随着物联网的发展,传感器会在更多的城市发展,我国传感器产业布局会更加广泛和合理。 我国传感器产业存在的主要问题,集中在技术和创新上。目前我国传感器创新能力还不足,因此核心技术缺乏,在高端传感器领域生产能力较低,依赖进口。同时共性关键技术尚未真正突破,尤其在自主知识产权的传感器设计软件方面还是空白。这也导致产业结构不合理,企业能力弱。这些问题我国传感器产业在发展中应该解决的问题。 参考:-html

什么是传感器的核心技术

有视觉的,一维的或者2维的距离传感器,还有kaman电涡流的位移传感器,看你怎么分类了。

一、传感器网络中常见的时间同步机制有:1、传感器节点通常需要彼此协作,去完成复杂的监测和感知任务数据融合是协作操作的典型例子,不同的节点采集的数据最终融合形成了一个有意义的结果。2、传感器网络的一些节能方案是利用时间同步来实现的。二、特点:1、传感节点体积小,成本低,计算能力有限。2、传感节点数量大、易失效,具有自适应性。3、通信半径小,带宽很低。4、电源能量是网络寿命的关键。5、数据管理与处理是传感器网络的核心技术。传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息,通过嵌入式系统对信息进行处理,并通过随机自组织无线通信网络以多跳中继方式将所感知信息传送到用户终端。从而真正实现“无处不在的计算”理念。

物联网的核心技术主要包括:1、传感器技术,这也是计算机应用中的关键技术。大家都知道,到为止绝大部分计算机处理的都是数字信号。自从有计算机以来就需要传感器把模拟信号转换成数字信号计算机才能处理。2、RFID标签也是一种传感器技术,RFID技术是融合了无线射频技术和嵌入式技术为一体的综合技术,RFID在自动识别、物品物流管理有着广阔的应用前景。3、嵌入式系统技术是综合了计算机软硬件、传感器技术、集成电路技术、电子应用技术为一体的复杂技术。经过几十年的演变,以嵌入式系统为特征的智能终端产品随处可见;小到人们身边的MP3,大到航天航空的卫星系统。嵌入式系统正在改变着人们的生活,推动着工业生产以及国防工业的发展。如果把物联网用人体做一个简单比喻,传感器相当于人的眼睛、鼻子、皮肤等感官,网络就是神经系统用来传递信息,嵌入式系统则是人的大脑,在接收到信息后要进行分类处理。这个例子很形象的描述了传感器、嵌入式系统在物联网中的位置与作用。

北京智芯传感的MEMS传感器有六大核心技术,并实现首个Sensor&ASIC集成,六大核心技术包括Sensor压力感应膜技术(低至2μ m超薄压力敏感膜设计与制作工艺),温度标定控制技术(温度标定与模以技术)、高精度AD设计(采用可变速率的多阶结构。在1Hz~10Hz的采样速率下,通过可变超采样速率可以实现不同的有效数字位),Sensor和ASIC集成技术(由原有的压力感应膜、1C分别流片、再进行叠层封装技术,直接进化到同步流片集成模式,解决MEMS感应膜与IC工艺兼容性)、开口塑封刁技术(改进注塑头结构,实现开孔结构;注塑材料改性,降低本身的应力;密闭性,封装应力尽量小)、应力隔离结构技术(芯片应力隔商结构设计工艺降低塑料封装料对压力计性能的影响。)

传感器检测技术论文

温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是最早开发,应用最广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。 两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果精确测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称之为“热电偶”。不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。 热电偶传感器有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。 温度传感器是五花八门的各种传感器中最为常用的一种,现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量6~300K范围内的温度。 非接触式温度传感器的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数:式中ε为材料表面发射率,ρ为反射镜的反射率。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。 非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。热电阻温度传感器分类 导体热电阻 铂电阻温度传感器 铜电阻温度传感器 铟电阻温度传感器 铑铁电阻温度传感器 铂钴电阻温度传感器 半导体热电阻 锗电阻温度传感器 碳电阻温度传感器 碳玻璃电阻温度传感器 ntc热敏电阻温度传感器[编辑本段]传感器市场前景 咨询公司INTECHNOCONSULTING的传感器市场报告显示,2008年全球传感器市场容量为506亿美元,预计2010年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长最快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景。 一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传感器、MEMS(Micro-Electro-MechanicalSystems,微机电系统)传感器、生物传感器等新兴传感器。其中,无线传感器在2007-2010年复合年增长率预计会超过25%。 目前,全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。新技术的发展将重新定义未来的传感器市场,比如无线传感器、光纤传感器、智能传感器和金属氧化传感器等新型传感器的出现与市场份额的扩大。

这个题目太大了,传感器有很多种类,我建议你跳其中一个产品应用到一个项目上就可以了。比如将光电传感器应用在花苗移栽上,替代人工移栽等,随便乱想都可以想出很多,反正不要用你现在的这个题目,这个题目那么大,只能写一些发展趋势还差不多,只能给你点提示,我想没有人会去帮你写这个1500字的论文的。

传感器与检测技术的论文

这个题目太大了,传感器有很多种类,我建议你跳其中一个产品应用到一个项目上就可以了。比如将光电传感器应用在花苗移栽上,替代人工移栽等,随便乱想都可以想出很多,反正不要用你现在的这个题目,这个题目那么大,只能写一些发展趋势还差不多,只能给你点提示,我想没有人会去帮你写这个1500字的论文的。

那你要是想要这个领域的文章,你直接去传感器技术与应用这本期刊上找吧,免费下载查阅的

相关百科

热门百科

首页
发表服务